Skip to main content

Advertisement

Log in

Inhibition of Non-Homologous End Joining and integration of DNA upon transformation of Rhizopus oryzae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Site-directed integration of DNA in the fungus Rhizopus has long been problematic because linearized plasmids used for transformation tend to replicate in high-molecular-weight concatenated structures, and rarely integrate into the chromosome. This work examines the methods that might interfere with the multimerization process, select against plasmids that had recircularized, and encourage strand invasion, hopefully leading to plasmid integration. In vitro methods were used to determine if the structure of the double-strand break had any effect on the ability to rejoin plasmid ends. In cell-free extracts, little difference in end-joining activity was found between linearized plasmids with 5′ overhangs, 3′ overhangs, or blunt ends. In addition, dephosphorylation of ends had no effect. Transformation of plasmids prepared in the same ways confirmed that they were easily religated in vivo, with almost all prototrophic isolates retaining autonomously replicated plasmids. It was possible to block religation by modifying the free ends of the linearized plasmids using oligonucleotide adapters which were blocked at the 3′-OH position and contained phosphorothioate nucleotides to make them nuclease-resistant. However, gene replacement, with repair of the auxotrophic mutation in the host chromosome, was the predominant event observed upon the transformation of these plasmids. The highest rates of integration were obtained with a plasmid containing a truncated, non-functional pyrG gene. Autonomous replication of this plasmid did not support prototrophic growth, but homologous recombination into the chromosome restored the function of the endogenous pyrG gene. All of the transformants obtained with this selective construct were found to have integrated the plasmid, with multicopy insertion being common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appel KF, Wolff AM, Arnau J (2004) A multicopy vector system for genetic studies in Mucor circinelloides and other zygomycetes. Mol Genet Genomics 271:595–602

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, West SC (1998) DNA end-joining catalyzed by human cell-free extracts. Proc Natl Acad Sci USA 95:14066–14070

    Article  PubMed  CAS  Google Scholar 

  • Benito EP, Campuzano V, Lopez-Matas MA, De Vicente JI, Eslava AP (1995) Isolation, characterization and transformation, by autonomous replication, of Mucor circinelloides OMPdecase-deficient mutants. Mol Gen Genet 248:126–135

    Article  PubMed  CAS  Google Scholar 

  • Blanco MG, Boan F, Gomez-Marquez J (2004) A paradox in the in vitro end-joining assays. J Biol Chem 279:26797–26801

    Article  PubMed  CAS  Google Scholar 

  • Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC (2002) Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 21:2827–2832

    Article  PubMed  CAS  Google Scholar 

  • Collins I, Newlon CS (1994) Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76:65–75

    Article  PubMed  CAS  Google Scholar 

  • Frank-Vaillant M, Marcand S (2002) Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol Cell 10:1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Gale JM, Tafoya GB (2004) Evaluation of 15 polymerases and phosphorothioate primer modification for detection of UV-induced C:G to T:A mutations by allele-specific PCR. Photochem Photobiol 79:461–469

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100

    Article  PubMed  CAS  Google Scholar 

  • Heyer WD, Ehmsen KT, Solinger JA (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557

    Article  PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    Article  PubMed  CAS  Google Scholar 

  • Kooistra R, Hooykaas PJJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  PubMed  CAS  Google Scholar 

  • Kraus E, Leung WY, Haber JE (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA 98:8255–8262

    Article  PubMed  CAS  Google Scholar 

  • Labhart P (1999) Ku-dependent nonhomologous DNA end joining in Xenopus egg extracts. Mol Cell Biol 19:2585–2593

    PubMed  CAS  Google Scholar 

  • Lewis LK, Resnick MA (2000) Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res 451:71–89

    PubMed  CAS  Google Scholar 

  • Lieber MR (1999) The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4:77–85

    Article  PubMed  CAS  Google Scholar 

  • Lin FL, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4:1020–1034

    PubMed  CAS  Google Scholar 

  • Lin FL, Sperle K, Sternberg N (1985) Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA 82:1391–1395

    Article  PubMed  CAS  Google Scholar 

  • Merker JD, Dominska M, Petes TD (2003) Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 165:47–63

    PubMed  CAS  Google Scholar 

  • Michielse CB, Salim K, Ragas P, Ram AF, Kudla B, Jarry B, Punt PJ, van den Hondel CA (2004) Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genomics 271:499–510

    Article  PubMed  CAS  Google Scholar 

  • Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolas FE, Garre V, TorresMartinez S, Ruiz-Vazquez RM (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics 266:463–470

    Article  PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci USA 80:4417–4421

    Article  PubMed  CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  • Prado F, Aguilera A (2003) Control of cross-over by single-strand DNA resection. Trends Genet 19:428–431

    Article  PubMed  CAS  Google Scholar 

  • Prado F, Cortes-Ledesma F, Huertas P, Aguilera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42:185–198

    PubMed  CAS  Google Scholar 

  • Ray A, Langer M (2002) Homologous recombination: ends as the means. Trends Plant Sci 7:435–440

    Article  PubMed  CAS  Google Scholar 

  • Revuelta JL, Jayaram M (1986) Transformation of Phycomyces blakesleeanus to G-418 resistance by an autonomously replicating plasmid. Proc Natl Acad Sci USA 83:7344–7347

    Article  PubMed  CAS  Google Scholar 

  • Richardson C, Jasin M (2000) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20:9068–9075

    Article  PubMed  CAS  Google Scholar 

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20: 3861–3870

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory, Cold Spring harbor

    Google Scholar 

  • Sandoval A, Labhart P (2002) Joining of DNA ends bearing non-matching 3′-overhangs. DNA Repair 1:397–410

    Article  PubMed  CAS  Google Scholar 

  • Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    Article  PubMed  CAS  Google Scholar 

  • Skory CD (2002) Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae. Mol Genet Genomics 268:397–406

    Article  PubMed  CAS  Google Scholar 

  • Skory CD (2004) Repair of plasmid DNA used for transformation of Rhizopus oryzae by gene conversion. Curr Genet 45:302–310

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31:826–832

    Article  PubMed  CAS  Google Scholar 

  • Van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6650–6558

    Article  Google Scholar 

  • Van Heeswijck R (1986) Autonomous replication of plasmids in Mucor transformants. Carlsberg Res Commun 51:433–443

    Article  CAS  Google Scholar 

  • Verma S, Eckstein F (1998) Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99–134

    Article  PubMed  CAS  Google Scholar 

  • Wostemeyer J, Burmester A, Weigel C (1987) Neomycin resistance as a dominantly selectable marker for transformation of the zygomycete Absidia glauca. Curr Genet 12:625–627

    Article  PubMed  CAS  Google Scholar 

  • Yanai K, Horiuchi H, Takagi M, Yano K (1990) Preparation of protoplasts of Rhizopus niveus and their transformation with plasmid DNA. Agric Biol Chem 54:2689–2696

    CAS  Google Scholar 

  • Zhang J, Li K (2003) Single-base discrimination mediated by proofreading 3′ phosphorothioate-modified primers. Mol Biotechnol 25:223–228

    Article  PubMed  Google Scholar 

  • Zhong Q, Boyer TG, Chen PL, Lee WH (2002) Deficient nonhomologous end-joining activity in cell-free extracts from BRCA1-null fibroblasts. Cancer Res 62:3966–3970

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Skory.

Additional information

Communicated by P. Punt

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skory, C.D. Inhibition of Non-Homologous End Joining and integration of DNA upon transformation of Rhizopus oryzae . Mol Genet Genomics 274, 373–383 (2005). https://doi.org/10.1007/s00438-005-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0028-1

Keywords

Navigation