Skip to main content

Insecticide Resistance: Molecular Insight

  • Chapter
  • First Online:
Molecular Approaches for Sustainable Insect Pest Management

Abstract

Insecticide resistance is one of the major worldwide challenges in insect pest management. Conventional to molecular approaches have been used in identifying insecticide resistance aspects, i.e. behavioural, ecological, physiological and molecular. The molecular mechanisms of insecticide resistance detection are mainly determined by three factors, i.e. gene amplification, upregulation and structural changes in genes. Genome sequencing, DNA barcoding, genome editing, transcriptional control and epigenetic studies have helped in making tremendous progress in insecticide resistance research. The new era of molecular studies has opened more reliable, precise and appropriate options for insecticide resistance recognition and timely management of insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alon M, Alon F, Nauen R, Morin S (2008) Organophosphates’ resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterases. Insect Biochem Mol Biol 38:940–949

    CAS  PubMed  Google Scholar 

  • Bacci L et al (2009) Physiological selectivity of insecticide to predatory wasps (Hymenoptera: Vespidae) of Diamondback moth. Sociobiology 53(1):151–167

    Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890

    CAS  PubMed  Google Scholar 

  • Bass C, Puinean M, Zimmer TC, Denholm I, Field LM, Foster SP et al (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51

    CAS  PubMed  Google Scholar 

  • Black WC 4th, Vontas JG (2007) Affordable assays for genotyping single nucleotide polymorphisms in insects. Insect Mol Biol 16:377–387

    CAS  PubMed  Google Scholar 

  • CABI (Centre for Agriculture and Biosciences International) (2019) Datasheet report for Spodoptera litura (taro caterpillar). CABI crop protection compendium. Last modified 21 Nov 2019. Available online: https://www.cabi.org/isc/datasheet/44520. Accessed 18 Sept 2020

  • Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–117

    CAS  PubMed  Google Scholar 

  • Cao CW, Zhang J, Cao XW, Liang P, Cuo HL (2008) Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic Biochem Physiol 90:175–180

    CAS  Google Scholar 

  • Chen S, Li XC (2007) Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol 7:13

    Google Scholar 

  • Chen W et al (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T et al (2017) Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat Ecol Evol 1:1747–1756

    PubMed  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson CS, Temple HJ, Miles A (2018) The genomics of insecticide resistance: insights from recent studies in African malaria vectors. Curr Opin Insect Sci 27:111–115

    PubMed  PubMed Central  Google Scholar 

  • Cock MJW (1993) Bemisia tabaci, an update 1986–1992 on the Cotton Whitefly with an annotated bibliography. CAB IIBC, Silwood Park, 78pp

    Google Scholar 

  • Coon MJ, Vaz AD, Bestervelt LL (1996) Peroxidative reactions of diversozymes. FASEB J 10:428–434

    CAS  PubMed  Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol XII:139–163

    Google Scholar 

  • Cui F, Li M, Chang H, Mao Y, Zhang H, Lu L, Yan S, Lang M, Liu L, Qiao C (2015) Carboxylesterase-mediated insecticide resistance: quantitative increase induces broader metabolic resistance than qualitative change. Pestic Biochem Physiol 121:88–96

    CAS  PubMed  Google Scholar 

  • Czosnek H, Brown JK (2009) The whitefly genome—white paper: a proposal to sequence multiple genomes of Bemisia tabaci. In: Stansly P, Naranjo S (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2460-2_18

    Chapter  Google Scholar 

  • Daborn P et al (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Gen Genomics 266:556–563

    CAS  Google Scholar 

  • Daborn PJ et al (2002) A single P450 allele associated with insecticide resistance in global populations of Drosophila. Science 297:2253–2256

    CAS  PubMed  Google Scholar 

  • Devonshire AL, Field LM, Foster SP, Moores GD, Williamson MS, Blackman RL (1998) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Phil Trans R Soc Lond B 353:1677–1684

    CAS  Google Scholar 

  • Fang S (2012) Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull Insectol 65(2):265–271

    Google Scholar 

  • Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82(83):83–90

    PubMed  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    CAS  PubMed  Google Scholar 

  • Field LM, Devonshire AL, Ffrench-Constant RH, Forde BG (1989) Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett 243:323–327

    CAS  Google Scholar 

  • Field LM, Devonshire AL, Forde BG (1998) Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem J 330:169–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert W, Maxam A (1973) The nucleotide sequence of the lac operator. Proc Natl Acad Sci 70:3581–3584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glastad KM, Hunt BG, Goodisman MAD (2019) Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu Rev Entomol 64:11.1–11.19

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hanner RH, Lima J, Floyd R (2009) DNA barcoding and its relevance to pests, plants and biological control. Acta Hort 823:41–48. https://doi.org/10.17660/ActaHortic.2009.823.3

    Article  Google Scholar 

  • Harshman LG, James AA (1998) Differential gene expression in insects: transcriptional control. Annu Rev Entomol 43:671–700

    CAS  PubMed  Google Scholar 

  • Haymer D (2015) Genetics and insect pest management in agriculture. CAB Rev 10(49):1–8

    Google Scholar 

  • He C, Xie W, Yang X, Wang SL, Wu QJ, Zhang YJ (2018) Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean. Insect Mol Biol 27:22–35

    CAS  PubMed  Google Scholar 

  • Heckel DG (2003) Genomics in pure and applied entomology. Annu Rev Entomol 48:235–260

    CAS  PubMed  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    CAS  PubMed  Google Scholar 

  • Hu YT, Wu TC, Yang EC, Wu PC, Lin PT, Wu YL (2017) Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci Rep 7:41255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Javed S, Agurla R, Lakshmi KV (2017) Molecular tools for detection of insecticide resistance. Int J Multidiscip Adv Res Trends 4(1):165–173

    Google Scholar 

  • Kranthi KR (2005) Insecticide resistance monitoring, mechanisms and management manual. CICR, ICAC, Nagpur, Washington, DC

    Google Scholar 

  • Kwon DH, Clark JM, Lee SH (2010) Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect Mol Biol 19:195–204

    CAS  PubMed  Google Scholar 

  • Leeuwen TV, Dermauw W, Mavridis K, Vontas J (2020) Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. Curr Opin Insect Sci 39:69–76

    PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    PubMed  Google Scholar 

  • Liu SS, Colvin J, De Barro PJ (2012) Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric 11:176–186

    Google Scholar 

  • Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 57:357–417

    CAS  PubMed  Google Scholar 

  • Meng X, Zhang Y, Bao H, Liu Z (2015a) Sequence analysis of insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata. PLoS One 10(4):e0125242

    PubMed  PubMed Central  Google Scholar 

  • Meng XK, Zhang YX, Guo BN, Sun HH, Liu CJ, Liu ZW (2015b) Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata. Neurosci Lett 584:123–128

    CAS  PubMed  Google Scholar 

  • Merrell DJ, Underhill JC (1956) Selection for DDT resistance in inbred, laboratory, and wild stocks of Drosophila melanogaster. J Econ Entomol 49:300–306

    Google Scholar 

  • Misra JR, Horner MA, Lam G, Thummel CS (2011) Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 25(17):1796–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppold AM, Muller R (2017) Epigenetics: a hidden target of insecticides. In: Verlinden H (ed) Advances in insect physiology, vol 53. Academic Press, Amsterdam, pp 313–324

    Google Scholar 

  • Panini M, Manicardi GC, Moores GD, Mazzoni E (2016) An overview of the main pathways of metabolic resistance in insects. ISJ 13:326–335

    Google Scholar 

  • Perry T, Batterham P, Daborn PJ (2011) The biology of insecticidal activity and resistance. Insect Biochem Mol Biol 41:411–422

    CAS  PubMed  Google Scholar 

  • R4P Network (2016) Trends and challenges in pesticide resistance detection. Trends Plant Sci 21(10):834–853

    Google Scholar 

  • Reyes M et al (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pestic Biochem Physiol 102:45–50

    CAS  Google Scholar 

  • Richard H, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20(3):163–170

    Google Scholar 

  • Rostant WG, Wedell N, Hosken DJ (2012) Transposable elements and insecticide resistance. Adv Genet 78:169–201. https://doi.org/10.1016/B978-0-12-394394-1.00002-X

    Article  CAS  PubMed  Google Scholar 

  • Sanger F et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof K-BG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JA (1995) The molecular genetics of resistance: resistance as a response to stress. Florida Entomol 78(3):399–414

    CAS  Google Scholar 

  • Siqueira HAA et al (2000) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47(4):247–251

    Google Scholar 

  • Small GJ, Hemingway J (2000) Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance the brown planthopper, Nilaparvata lugens. Insect Mol Biol 9:647–653

    CAS  PubMed  Google Scholar 

  • Sonoda S, Tsumuki H (2005) Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae). Pestic Biochem Physiol 82:94–101

    CAS  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    CAS  PubMed  Google Scholar 

  • Stewart EL, McDonald BA (2014) Measuring quantitative virulence in the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis. Phytopathology 104:985–992

    PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • Wang RL et al (2017) Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. Insect Sci 24:235–247

    CAS  PubMed  Google Scholar 

  • Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y, Feyereisen R, Wu Y (2018) CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun 9:4820

    PubMed  PubMed Central  Google Scholar 

  • Wilson TG (1993) Transposable elements as initiators of insecticide resistance. J Econ Entomol 86(3):645–651

    CAS  PubMed  Google Scholar 

  • World Health Organisation Expert Committee on Insecticides (1957) WHO Tech Rep Ser, 7th Rept: 125

    Google Scholar 

  • Yan H, Bonasio R, Simola DF, Liebig L, Berger SL, Reinberg D (2015) DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol 60:435–452

    CAS  PubMed  Google Scholar 

  • Zhang Z, Saier MH (2009) A novel mechanism of transposon-mediated gene activation. PLoS Genet 5:e1000689

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaur, N., Joshi, R. (2021). Insecticide Resistance: Molecular Insight. In: Omkar (eds) Molecular Approaches for Sustainable Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3591-5_2

Download citation

Publish with us

Policies and ethics