Skip to main content
Log in

Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host–parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo-Whitehouse K, Vicente J, Gortazar C, Hofle U, Fernandez-De-Mera IG, Amos W (2005) Genetic resistance to bovine tuberculosis in the Iberian wild boar. Mol Ecol 14:3209–3217

    Article  CAS  PubMed  Google Scholar 

  • Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL (2008) Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665

    Article  CAS  PubMed  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Landry C (2003) Mhc studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Biedrzycka A, Radwan J (2008) Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Mol Ecol 17:4801–4811

    Article  CAS  PubMed  Google Scholar 

  • Borghans JAM, Noest AJ, De Boer RJ (2003) Thymic selection does not limit the individual MHC diversity. Eur J Immunol 33:3353–3358

    Article  CAS  PubMed  Google Scholar 

  • Bos DH, Gopurenko D, Williams RN, Dewoody JA (2008) Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. Evolution 62:1458–1468

    Article  CAS  PubMed  Google Scholar 

  • Charbonnel N, De Bellocq JG, Morand S (2006) Immunogenetics of micromammal-macroparasite interactions. In: Morand S, Krasnov B, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 401–442

    Chapter  Google Scholar 

  • Clarke B, Kirby DRS (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000

    Article  CAS  PubMed  Google Scholar 

  • Dávidová M, Jarkovský J, Matějusová I, Gelnar M (2005) Seasonal occurrence and metric variability of Gyrodactylus rhodei Žitňan 1964 (Monogenea, Gyrodactylidae). Parasitol Res 95:398–405

    Article  PubMed  Google Scholar 

  • De Bellocq JG, Charbonnel N, Morand S (2008) Coevolutionary relationship between helminth diversity and MHC class II polymorphism in rodents. J Evol Biol 21:1144–1150

    Article  Google Scholar 

  • Deter J, Bryja J, Chaval Y, Galan M, Henttonen H, Laakkonen J, Voutilainen L, Vapalahti O, Vaheri A, Salvador AR, Morand S, Cosson JF, Charbonnel N (2008) Association between the DQA MHC class II gene and puumala virus infection in Myodes glareolus, the bank vole. Infect Genet Evol 8:450–458

    Article  CAS  PubMed  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L (2007) Clinal variation in MHC diversity with temperature: evidence for the role of host–pathogen interaction on local adaptation in Atlantic salmon. Evolution 61:2154–2164

    Article  CAS  PubMed  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos T R Soc B 364:1555–1565

    Article  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at H-2 gene complex. Nature 256:50–52

    Article  CAS  PubMed  Google Scholar 

  • Doledec S, Chessel D (1994) Co-inertia analysis—an alternative method for studying species environment relationships. Freshwater Biol 31:277–294

    Article  Google Scholar 

  • Evans ML, Neff BD (2009) Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 18:4716–4729

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Frischknecht M (1993) The breeding coloration of male 3-spined sticklebacks (Gasterosteus aculeatus) as an indicator of energy investment in vigor. Evol Ecol 7:439–450

    Article  Google Scholar 

  • Froeschke G, Sommer S (2012) Insights into the complex associations between MHC class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS One 7, e31820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godot V, Harraga S, Beurton I, Tiberghien P, Sarciron E, Gottstein B, Vuitton DA (2000) Resistance/susceptibility to Echinococcus multilocularis infection and cytokine profile in humans. II. Influence of the HLA B8, DR3, DQ2 haplotype. Clin Exp Immunol 121:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidelli G, Tavechio WL, Takemoto RM, Pavanelli GC (2011) Relative condition factor and parasitism in anostomid fishes from the floodplain of the Upper Paraná River, Brazil. Vet Parasitol 177:145–151

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (1999) Balancing selection and MHC. Genetica 104:207–214

    Article  CAS  Google Scholar 

  • Hedrick PW, Parker KM, Lee RN (2001) Using microsatellite and MHC variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. Mol Ecol 10:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Herdegen M, Babik W, Radwan J (2014) Selective pressures on MHC class II genes in the guppy (Peocilia reticulata) as inferred by hierarchical analysis of population structure. J Evol Biol 27:2347–2359

    Article  CAS  PubMed  Google Scholar 

  • Hill AVS (1991) HLA associations with malaria in Africa: some implications for MHC evolution. In: Klein J, Klein D (eds) Molecular evolution of the major histocompatibility complex. Springer, Berlin, pp 403–420

    Chapter  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  CAS  PubMed  Google Scholar 

  • Kamath PL, Getz WM (2012) Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS One 7, e50971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karvonen A, Seehausen O (2012) The role of parasitism in adaptive radiations—when might parasites promote and when might they constrain ecological speciation? Int J Ecol 280169

  • Klein J, Figueroa F (1986) The evolution of class I MHC genes. Immunol Today 7:41–44

    Article  CAS  PubMed  Google Scholar 

  • Kortet R, Taskinen J, Sinisalo T, Jokinen I (2003) Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biol J Linn Soc 78:117–127

    Article  Google Scholar 

  • Lamková K, Šimková A, Palíková M, Jurajda P, Lojek A (2007) Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitol Res 101:775–789

    Article  PubMed  Google Scholar 

  • Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10:2525–2539

    Article  CAS  PubMed  Google Scholar 

  • Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T (2001) Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc Biol Sci 268:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lenz TL, Wells K, Pfeiffer M, Sommer S (2009) Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus). BMC Evol Biol 9:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Magurran AE (1988) Ecological diversity and measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Miller KM, Kaukinen KH, Beacham TD, Withler RE (2001) Geographic heterogeneity in natural selection on an MHC locus in Sockeye salmon. Genetica 111:237–257

    Article  CAS  PubMed  Google Scholar 

  • Nadachowska-Brzyska K, Zielinski P, Radwan J, Babik W (2012) Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 21:887–906

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex-molecules in an individual. Proc Natl Acad Sci U S A 89:10896–10899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1., http://CRAN.R-project.org/package=vegan

    Google Scholar 

  • Oliver MK, Telfer S, Piertney SB (2009) Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc R Soc Lond B Biol Sci 276:1119–1128

    Article  CAS  Google Scholar 

  • Ottová E, Šimková A, Martin JF, De Bellocq JG, Gelnar M, Allienne JF, Morand S (2005) Evolution and trans-species polymorphism of MHC class II beta genes in cyprinid fish. Fish Shellfish Immun 18:199–222

    Article  Google Scholar 

  • Ottová E, Šimková A, Morand S (2007) The role of major histocompatibility complex diversity in vigour of fish males (Abramis brama L.) and parasite selection. Biol J Linn Soc 90:525–538

    Article  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Pilosof S, Fortuna MA, Cosson JF, Galan M, Chaisiri K, Ribas A et al (2014) Host–parasite network structure is associated with community-level immunogenetic diversity. Nat Commun 5:5172

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Marshall LJ, Spencer HG (2000) Metazoan parasite species richness and genetic variation among freshwater fish species: cause or consequence? Int J Parasitol 30:697–703

    Article  CAS  PubMed  Google Scholar 

  • Reusch TBH, Langefors A (2005) Inter- and intralocus recombination drive MHC class IIB gene diversification in a teleost, the three-spined stickleback Gasterosteus aculeatus. J Mol Evol 61:531–541

    Article  CAS  PubMed  Google Scholar 

  • Reusch TBH, Haberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    Article  CAS  PubMed  Google Scholar 

  • Rijks J, Hoffman J, Kuiken T, Osterhaus A, Amos W (2008) Heterozygosity and lungworm burden in harbour seals (Phoca vitulina). Heredity 100:587–593

    Article  CAS  PubMed  Google Scholar 

  • Rohlenová K, Morand S, Hyršl P, Tolarová S, Flajšhans M, Šimková A (2011) Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio). Parasit Vectors 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwensow N, Fietz J, Dausmann KH, Sommer S (2007) Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity 99:265–277

    Article  CAS  PubMed  Google Scholar 

  • Seifertová M, Šimková A (2011) Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics 63:167–181

    Article  PubMed  Google Scholar 

  • Seifertová M, Vyskočilová M, Morand S, Šimková A (2008) Metazoan parasites of freshwater cyprinid fish (Leuciscus cephalus): testing biogeographical hypotheses of species diversity. Parasitology 135:1417–1435

    Article  PubMed  Google Scholar 

  • Seifertová M, Bryja J, Vyskočilová M, Martínková N, Šimková A (2012) Multiple pleistocene refugia and postglacial colonization in the European chub (Squalius cephalus) revealed by combined use of nuclear and mitochondrial markers. J Biogeogr 39:1024–1040

    Article  Google Scholar 

  • Šimková A, Jarkovský J, Koubková B, Baruš V, Prokeš M (2005) Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Parasitol Res 95:65–72

    Article  PubMed  Google Scholar 

  • Šimková A, Ottová E, Morand S (2006) MHC variability, life-traits and parasite diversity of European cyprinid fish. Evol Ecol 20:465–477

    Article  Google Scholar 

  • Skarstein F, Folstad I, Liljedal S (2001) Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic charr. Can J Zool 79:271–278

    Article  Google Scholar 

  • Sommer S (2005) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58:181–189

    Article  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448

    Article  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 277:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4tkgui packages. J Stat Softw 22:1–14

    Article  Google Scholar 

  • Tobler M, Plath M, Riesch R, Schlupp I, Grasse A, Munimanda GK, Setzer C, Penn DJ, Moodley Y (2014) Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. J Evol Biol 27:960–974

    Article  CAS  PubMed  Google Scholar 

  • Tollenaere C, Bryja J, Galan M, Cadet P, Deter J, Chaval Y, Berthier K, Ribas Salvador A, Voutilainen L, Laakkonen J, Henttonen H, Cosson JF, Charbonnel N (2008) Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics. J Evol Biol 21:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphisms of MHC class-II genes—divergent allele advantage. Immunol Res 9:115–122

    Article  CAS  PubMed  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232

    Article  CAS  PubMed  Google Scholar 

  • Wegner KM, Kalbe M, Schaschl H, Reusch TBH (2004) Parasites and individual major histocompatibility complex diversity—an optimal choice? Microbes Infect 6:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Winternitz JC, Wares JP, Yabsley MJ, Altizer S (2014) Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol Ecol 28:957–975

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the group from the Department of Fish Ecology, Institute of Vertebrate Biology, Academy of Sciences (Czech Republic); Teodora Trichkova and Milen Vassilev from the Institute of Zoology, Bulgarian Academy of Sciences (Bulgaria); Alexis Ribas Salvador from the Laboratory of Parasitology, University of Barcelona and Antoni Arrizabalaga, responsible for the Museu de Granollers Ciències Naturals “La Tela” (Spain); André Gilles, René Chappaz and their co-workers from Université de Provence Aix- Marseille 1 (France); Paolo Galli from the Department of Biotechnology and Biosciences, University of Milano-Bicocca (Italy); Jussi Pennanen, Finnish Game and Fisheries Research Institute, Helsinki (Finland); and Miroslaw Przybylski, Grziegorz Zieba from the University of Lodz, Lodz (Poland) for their help with fish sampling in the different sampling localities and the opportunity to use their laboratories. We also thank all colleagues from the Laboratory of Parasitology, Faculty of Science, Masaryk University, Brno (Czech Republic) for their help with molecular techniques and fish dissection. We are very grateful to Matthew Nicholls for the English revision of the final version. The field work and travel costs were funded by the Czech Science Foundation, Project No. 524/07/0188. The analyses were funded by the Czech Science Foundation, project No. P505/12/G112 (ECIP). The sponsors had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

AŠ conceived and designed the experiments. JJ and MS analyzed the data. MS and AŠ wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Seifertová.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The distribution of Sqce-DAB alleles and their observed frequencies in each fish population. The frequency of MHC class IIB alleles (DAB1-like alleles in black and DAB3-like alleles in gray) is expressed as the proportion of individuals with a given DAB allele in each of 15 populations of European chub. See Table 1 for population abbreviations. The DAB alleles present in four lineages are shown with an asterisk, the alleles present in three lineages are shown with a circle, and the alleles present in two lineages are shown with +. (GIF 125 kb)

High resolution image (TIF 905 kb)

Table S1

List of metazoan parasite species identified in 15 populations of Squalius cephalus in European rivers. Parasite intensity of infection (mean number of metazoan parasites per infected host) is included. Data on parasite species are from Seifertová et al. (2008). (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifertová, M., Jarkovský, J. & Šimková, A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?. Parasitol Res 115, 1401–1415 (2016). https://doi.org/10.1007/s00436-015-4874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4874-4

Keywords

Navigation