Skip to main content
Log in

Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo SA, Webster JP (2013) Neural parasitology: how parasites manipulate host behaviour. Exp Biol 216:1–2

    Article  Google Scholar 

  • Anderson RA, Knols BGJ, Koella JC (2000) Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae. Parasitology 4:329–333

    Article  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc Biol Sci 267:1583–1589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci 267:1591–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biro PA (2012) Do rapid assays predict repeatability in labile (behavioural) traits? Anim Behav 83:1295–1300

    Article  Google Scholar 

  • Boissy A (1995) Fear and fearfulness in animals. Q Rev Biol 70:165–191

    Article  CAS  PubMed  Google Scholar 

  • Brown CR (1997) Purple Martin (Progne subis). In: Pool A, Giil E (eds) The birds of North America. Philadelphia, and the American Ornithologists Union, Washington DC, USA.

  • Carere C, Van Oers K (2004) Shy and bold great tits (Parus major): body temperature and breath rate in response to handling stress. Physiol Behav 82:905–912

    Article  CAS  PubMed  Google Scholar 

  • Carere C, Welink D, Drent PJ, Koolhaas JM, Groothuis TG (2001) Effect of social defeat in a territorial bird (Parus major) selected for different coping styles. Physiol Behav 73:427–433

    Article  CAS  PubMed  Google Scholar 

  • Cator LJ, Lynch PA, Thomas MB, Read AF (2014) Alterations in mosquito behaviour by malaria parasites: potential impact on force of infection. Malar J 13:164

    Article  PubMed Central  PubMed  Google Scholar 

  • Charnov LE, Krebs RJ (1975) The evolution of alarm calls: altruism or manipulation? Am Nat 109:107–112

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral science. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cornet S, Nicot A, Rivero A, Gandon S (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16:323–329

    Article  PubMed  Google Scholar 

  • Dawson RD, Bortolotti GR (2000) Effects of hematozoan parasites on condition and return rates of American kestrels. Auk 117:373–380

    Article  Google Scholar 

  • Day JF, Edman JD (1983) Malaria renders mice susceptible to mosquito feeding when gametocytes are most infective. J Parasitol 69:163–170

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation Statistical Computing

  • Deviche P, Parris J (2006) Testosterone treatment to free-ranging male dark-eyed juncos (Junco hyemalis) exacerbates hemoparasitic infection. Auk 123:548–562

    Article  Google Scholar 

  • Dingemanse N (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938

    Article  Google Scholar 

  • Dufva R, Allander K (1995) Intraspecific variation in plumage coloration reflects immune response in Great tit (Parus major) males. Funct Ecol 9:785–789

    Article  Google Scholar 

  • Edelaar P, Serrano D, Carrete M, Blas J, Potti J, Tella JL (2012) Tonic immobility is a measure of boldness toward predators : an application of Bayesian structural equation modeling. Behav Ecol 23:619–626

    Article  Google Scholar 

  • Endler JA (1991) Interactions between predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology an evolutionary approach. Blackwell, Oxford, pp 169–196

    Google Scholar 

  • Erhard HW, Mendl M, Christiansen SB (1999) Individual differences in tonic immobility may reflect behavioural strategies. Appl Anim Behav Sci 64:31–46

    Article  Google Scholar 

  • Fallis A, Desser S (1997) On species of Leucocytozoon, Haemoproteus and Hepatocystis. Parasit Protozoa 3:239–266

    Google Scholar 

  • Forkman B, Boissy A, Meunier-Salaün MC, Canali E, Jones RB (2007) A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol Behav 92:340–374

    Article  CAS  PubMed  Google Scholar 

  • Garamszegi LZ (2006) Comparing effect sizes across variables: generalization without the need for Bonferroni correction. Behav Ecol 17:682–687

    Article  Google Scholar 

  • Garamszegi LZ, Calhim S, Dochtermann N, Hegyi G, Hurd PL, Jorgensen C, Kutsukake N, Lajeunesse MJ, Pollard KA, Schielzeth H, Symonds MRE, Nakagawa S (2009) Changing philosophies and tools for statistical inferences in behavioral ecology. Behav Ecol 20:1363–1375

    Article  Google Scholar 

  • Garcia-Longoria L, Garamszegi LZ, Møller AP (2014) Host escape behaviour and blood parasite infections in birds. Behav Ecol 25:890–900

    Article  Google Scholar 

  • Godfrey RD, Fedynich AM, Pence DB (1987) Quantification of hematozoa in blood smears. J Wildl Dis 23:558–565

    Article  PubMed  Google Scholar 

  • Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

    Article  CAS  PubMed  Google Scholar 

  • Hagelin JC (2002) The kinds of traits involved in male-male competition: a comparison of plumage, behaviour, and body size in quail. Behav Ecol 1:32–41

    Article  Google Scholar 

  • Hakimi M, Cannella D (2011) Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends Parasitol 27:481–486

    Article  CAS  PubMed  Google Scholar 

  • Hamilton J, Hurd H (2002) The behavioural ecology of parasites. CABI Publi, Wallingford, UK

    Google Scholar 

  • Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD (2010) Corticosterone, testosterone and life-history strategies of birds. Proc R Soc B 277:3203–3212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoagland H (1928) On the mechanism of tonic immobility in vertebrates. J Gen Physiol 11:715–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Högstedt G (1983) Adaptation unto death : function of fear screams. Am Nat 121:562–574

    Article  Google Scholar 

  • Jones RB (1986) The tonic immobility reaction of the domestic fowl: a review. World Poult Sci J 42:82–96

    Article  Google Scholar 

  • Kavaliers M, Colwell DD, Choleris E, Ossenkopp KP (1999) Learning to cope with biting flies: rapid NMDA-mediated acquisition of conditioned analgesia. Behav Neurosci 113:126–135

    Article  CAS  PubMed  Google Scholar 

  • Keymer AR, Read AF (1991) Behavioural ecology: the impact of parasitism. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite-host associations, coexistence or conflict? Oxford University Press, Oxford, pp 37–61

    Google Scholar 

  • Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569

    Article  CAS  PubMed  Google Scholar 

  • Koella JC, Rieu L, Paul REL (2002) Stage-specific manipulation of a mosquito’s host-seeking behavior by the malaria parasite Plasmodium gallinaceum. Behav Ecol 13:816–820

    Article  Google Scholar 

  • Lafferty KD, Shaw JC (2013) Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol 216:56–66

    Article  PubMed  Google Scholar 

  • Lefevre T, Thomas F, Schwartz A, Levashina E, Blandin S, Brizard JP, Le Bourligu L, Demettre E, Renaud F, Biron D (2007) Malaria Plasmodium agent induces alteration in the head proteome of their Anopheles mosquito host. Proteomics 7:1908–1915

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre T, Roche B, Poulin R, Hurd H, Renaud F, Thomas F (2008) Exploiting host compensatory responses: the “must” of manipulation? Trends Parasitol 24:435–439

    Article  PubMed  Google Scholar 

  • Lehane MJ (2005) The biology of blood-sucking in insects. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Levri EP (1995) Parasite-induced change in host behavior of a freshwater snail : parasitic manipulation or byproduct of infection ? Behav Ecol 10:234–241

    Article  Google Scholar 

  • Lima S (1998) Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv Study Behav 27:215–290

    Article  Google Scholar 

  • Lind J, Cresswell W (2005) Determining the fitness consequences of antipredation behavior. Behav Ecol 16:945–956

    Article  Google Scholar 

  • Loye JE, Zuk M (1991) Bird-parasite interactions: ecology, evolution and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Marzal A, de Lope F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545

    Article  PubMed  Google Scholar 

  • Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D et al (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS ONE 6:8

    Article  Google Scholar 

  • Møller AP, Jennions M (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500

    Article  Google Scholar 

  • Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  • Møller AP, Nielsen JT (2010) Fear screams and adaptation to avoid imminent death: effects of genetic variation and predation. Ethol Ecol Evol 22:183–202

    Article  Google Scholar 

  • Møller AP, Nielsen JT, Erritzøe J (2006) Losing the last feather: feather loss as an antipredator adaptation in birds. Behav Ecol 17:1046–1056

    Article  Google Scholar 

  • Møller AP, Christiansen S, Mousseau T (2011) Sexual signals, risk of predation and escape behavior. Behav Ecol 22:800–807

    Article  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, Oxford

    Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 102:403–405

    Article  Google Scholar 

  • Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045

    Article  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82:591–605

    Article  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc 85:935–956

    PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Krizanauskiene A, Bensch S, Bolshakov CV (2009) Plasmodium relictum (lineage P-SGS1): Further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone. Exp Parasitol 123:134–139

    Article  CAS  PubMed  Google Scholar 

  • Platzen D, Magrath RD (2004) Parental alarm calls suppress nestling vocalization. Proc Biol Sci 271:1271–1276

    Article  PubMed Central  PubMed  Google Scholar 

  • Poulin R (2010) Parasite manipulation of host behavior: an update and frequently asked questions. In: Brockmann J (ed) Advances in the study of behavior. Academic Press Burlington, New Jersey, pp 151–186

    Google Scholar 

  • Poulin R (2013) Parasite manipulation of host personality and behavioural syndromes. J Exp Biol 216:18–26

    Article  PubMed  Google Scholar 

  • Poulin R, Nichol K, Latham ADM (2003) Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict? Int J Parasitol 33:425–433

    Article  PubMed  Google Scholar 

  • Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev Camb Philos Soc 82:291–318

    Article  PubMed  Google Scholar 

  • Réale D, Dingemanse NJ, Kazem AJN, Wright J (2010) Evolutionary and ecological approaches to the study of personality. Philos Trans R Soc Lond B Biol Sci 365:3937–3946

    Article  PubMed Central  PubMed  Google Scholar 

  • Remple DJ (2004) Intracellular hematozoa of raptors: a review and update. J Avian Med Surg 18:75–88

    Article  Google Scholar 

  • Rossignol PA, Ribeiro JM, Spielman A (1984) Increased intradermal probing time in sporozoite-infected mosquitoes. Am J Trop Med Hyg 33:17–20

    CAS  PubMed  Google Scholar 

  • Saino N, Møller AP, Bolzernaa AM (1995) Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): an experimental test of the immunocompetence hypothesis. Behav Ecol 6:397–404

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2002) Molecular cloning: a laboratory manual. Cold Sprin, New York, USA

    Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology and genetics. Oxford University Press, Oxford, UK

    Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndrome: an integrative overview. Q Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Smallegange RC, van Gemert GJ, van de Vegte-Bolmer M, Gezan S, Takken W, Sauerwein RW, Logan JG (2013) Malaria infected mosquitoes express enhanced attraction to human odor. PLoS ONE 8:5

    Article  Google Scholar 

  • Stamps JA, Groothuis TGG (2010) Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences. Philos Trans R Soc Lond B Biol Sci 365:4029–4041

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas F, Renaud F, Guégan JF (2005) Parasitism and ecosystems. Oxford Uiversity Press, Oxford, UK

    Book  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Van Riper C III, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • Viera VM, Viblanc VA, Filippi-Codaccioni O, Côté SD, Groscolas R (2011) Active territory defence at a low energy cost in a colonial seabird. Anim Behav 82:69–76

    Article  Google Scholar 

  • Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A 104:6442–6447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Webster JP, McConkey GA (2010) Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. Folia Parasitol 57:95–104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Spanish Ministry of Economy and Competition (CGL2009-08976 and CGL2012-36665) and the Regional Government of Extremadura (GRU: 10134). Luz Garcia-Longoria was supported by a PhD grant from Ministry of Economy and Competition of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Garcia-Longoria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Longoria, L., Møller, A.P., Balbontín, J. et al. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study. Parasitol Res 114, 4493–4501 (2015). https://doi.org/10.1007/s00436-015-4693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4693-7

Keywords

Navigation