Skip to main content

Advertisement

Log in

Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Biosynthesis of silver nanoparticles has provoked nowadays and alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized extracellular method using Bacillus megaterium. The AgNPs formations were confirmed initially through color change, and the aliquots were characterized through UV–visible spectrophotometer, followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectra. The surface plasmon resonance band was shown at 430 nm in UV–vis spectrophotometer. The bioreduction was categorized through identifying the compounds responsible for the AgNP synthesis, and the functional group present in B. megaterium cell-free culture was scrutinized using FTIR. The topography and morphology of the particles were determined using SEM. In addition, this biosynthesized AgNPs were found to show higher insecticidal efficacy against vector mosquitoes. The LC50 and LC90 were found to be 0.567, 2.260; 0.90, 4.44; 1.349, 8.269; and 1.640, 9.152 and 0.240, 0.955; 0.331, 1.593; 0.494, 2.811; and 0.700, 4.435 with respect to the first, second, third, and fourth instar larvae of Culex quinquefasciatus and Aedes aegypti. All the calculated χ 2 values are highly significant compared with the tabulated value. Therefore, B. megaterium-synthesized silver nanoparticles would be used as a potent larvicidal agent against Cx. quinquefasciatus and Ae. aegypti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266

    Article  CAS  Google Scholar 

  • Ahmad RS, Sara M, Himid RS, Hossein J, Ashraf-Asadat N (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  Google Scholar 

  • Arunachalam N, Murty US, Kabilan L, Balasubramanian A, Thenmozhi V, Narahari D, Ravi A, Satyanarayana K (2004) Studies on dengue in rural areas of Kurnool District, Andhra Pradesh, India. JAMCA 20:87–90

    CAS  Google Scholar 

  • Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB (2012) Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B 94:226–230

    Article  CAS  Google Scholar 

  • Becker N (2000) Bacterial control of vector-mosquitoes and blackflies. In: Charles JF, Delecluse A, Nielson-Le Roux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordreclit, the Netherlands, pp 383–398

    Chapter  Google Scholar 

  • Becker N, Ludwig M (1993) Investigations on possible resistance to Aedes vexans field populations after 10-year application of Bacillus thuringiensis israelensis. JAMCA 9:221–224

    CAS  Google Scholar 

  • Behera SS, Jha S, Arakha M, Panigrahi TK (2013) Synthesis of silver nanoparticles from microbial source—a green aynthesis approach, and evaluation of its antimicrobial activity against Escherichia coli. Int J Engine Res Appl 3:058–062

    Google Scholar 

  • Cadavid-Restrepo G, Sahaza J, Orduz S (2012) Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Mem Inst Oswaldo Cruz 107:74–79

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aleo vera plant extract. Biotechnol Prog 2:577–583

    Article  Google Scholar 

  • Chaturvedi UC, Nagar R (2008) Dengue and dengue haemorrhagic fever: Indian perspective. J Biosci 33:429–441

    Article  CAS  PubMed  Google Scholar 

  • Chenniappan K, Ayyadurai N (2012) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:381–388

    Article  PubMed  Google Scholar 

  • Cruz D, Fale PL, Mourato A, Va PD, Serralheiro ML, Lino AR (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B 81:67–73

    Article  CAS  Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pacific J Trop Dis 3:174–179

    Article  CAS  Google Scholar 

  • Fillinger U, Lindsay SW (2006) Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicide in rural Kenya. Trop Med Int Health 11:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-videa J, Parson JG, Troiani P, Santiago HE, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 13:1357

    Article  Google Scholar 

  • Gole A, Dash C, Ramachandran V, Mandale AB, Sainkar SR, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization and enzymatic activity. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Gubler DJ, Trent DW (1993) Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis 2:383–393

    CAS  PubMed  Google Scholar 

  • Guneidy A, Ebeid A, Salem H (1988) Development and reversion of malathion resistance in adult Culex pipiens. Indian J Entomol 50:45–54

    Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009a) Biosynthesis, purification characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74:328–335

    Article  CAS  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009b) Antiangiogenic properties of silver nanoparticles. Biometerials 30:6341–6350

    Article  CAS  Google Scholar 

  • Jea YS, Beom SK (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  Google Scholar 

  • Jegadeeswaran P, Shivaraj R, Venckatesh R (2012) Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Digest J Nanomat Biostruc 7:991–998

    Google Scholar 

  • Kalimuthu K, Babu SR, Venkataraman DM, Bilal Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Karthikeyan S, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B 77:257–262

    Article  CAS  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone Mexicana leaf extract and evaluation of their antimicrobial activities. Digest J Nanomed Biostruc 5:482–489

    Google Scholar 

  • Kumar (1984) Larvicidal activity of different product against Culex quinquefasciatus mosquito larvae. J Environ Biol 11:101–104

    Google Scholar 

  • Kumar A, Sharma SK, Padbidri VS, Thakare JP, Jain DC, Datta KK (2001) An outbreak of dengue fever in rural areas of northern India. J Commun Dis 33:274–281

    CAS  PubMed  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2013) Eco-friendly synthesis of silver nanoparticles from commercially available plant products and their antibacterial properties. Scientia Irancia F 20:1049–1054

    CAS  Google Scholar 

  • Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Phys B Condens Matter 299:142–146

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nano- particles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  CAS  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C (2014) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector Aedes aegypti (diptera: culicidae). Parasitol Res 113:2869–2877

    Article  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C, Vinayaga Moorthi P (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316

    Article  PubMed  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed 5:452–456

    Article  CAS  Google Scholar 

  • Peter H, Math V, Roberts DW (1989) Enzymes involved in the synthesis of fungal toxins. Proceeding of International Conference Biopesticide. Theory and Practice 169–181

  • Pialoux G, Gauzere B, Jaureguiberry S (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327

    Article  PubMed  Google Scholar 

  • Prakash S, Singh G, Soni N, Sharma S (2010) Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) In laboratory. Parasitology 107:651–655

    Article  Google Scholar 

  • Rajesh WR, Jaya RL, Niranjan SK, Vijay DM, Sahebrao BK (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5:117–122

    Article  Google Scholar 

  • Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Digest J Nanomat Biostruc 5:491–496

    Google Scholar 

  • Sastry M, Mayya KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particle. Colloids Surf A Physicochem Eng 127:221–228

    Article  CAS  Google Scholar 

  • Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Physical Chem B 102:1404–1410

    Article  CAS  Google Scholar 

  • Sen GNP (2004) Water induced stabilization of ZnS nanoparticles. Solid State Commun 132:791–794

    Article  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Soni N, Prakash S (2010) Effect of Chrysosporium keratinophilum metabolites against Culex quinquefasciatus after chromatographic purification. Parasitol Res 107:1329–1336

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2011) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticles 2:125–132

    Article  Google Scholar 

  • Soni N, Prakash S (2015) Different geometrical AgNPs for vector control and their added value of antibacterial activity. J Parasitol Photon 105:232–243

    Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles sptephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Sundaravadivelan C, Nalini M (2012) Biolarvicidal effect of phyto-synthesized silver nanoparticles using Pedilanthus tithymaloides (L.) Poit stem extract against the dengue vector Aedes aegypti L. (Diptera; Culicidae). Asian Pacific J Trop Biomed 1–8

  • Surendran A, Vennison SJ (2011) Occurrence and distribution of mosquitocidal Bacillus sphaericus in soil. Acad J Entomol 4:17–22

    Google Scholar 

  • Tanja K, Ralph J, Eva O, Claes-Goran G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614

    Article  Google Scholar 

  • Verma P, Prakash S (2010) Efficacy of Chrysosporium tropicum metabolite against mixed population of adult mosquito (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) after purification with flash chromatography. Parasitol Res 107:163–166

    Article  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputrea NM, Varadarajana PV, Nachanea RP, Paralikara KM, Balasubramanyaa RH (2007) Biological Synthesis of Silver Nanoparticles using the Fungus Aspergillus Flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vivek M, Senthil Kumar P, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wirth MC, Walton WE, Federici BA (2010) Evaluation of resistance to the Bacillus sphaericus bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Environ Microbiol 12:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides WHO/CDS/WHOPES/GCDPP/13

  • World Health Organization (2012) Lymphatic Filariasis. http://www.who.int/mediacentre/factsheets/fs 102/en/

  • Yang T, Lu L, Fu G, Zhong S, Ding G (2009) Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China. J Vector Ecol 34:148–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the management of M.K.M. Group of Colleges, Hodal and Thiagarajar College (Autonomous), Madurai, for providing the facilities to perform the research works in the PG and Research Department of Zoology and Microbiology. Author ANB thanked UGC-MANF, India, for the financial support, and CRME (ICMR), Madurai, kindly supplied eggs and larvae required during our work. We thank the Department of Chemistry, Madras University and Karunya University, Coimbatore, for the instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Najitha Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, A.N., Balasubramanian, C. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae). Parasitol Res 114, 4069–4079 (2015). https://doi.org/10.1007/s00436-015-4635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4635-4

Keywords

Navigation