Skip to main content
Log in

Comparative profiling of microRNAs in male and female adults of Ascaris suum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ascaris nematodes, which cause ascariasis in humans and pigs, are among the most important nematodes from both health and economic perspectives. microRNA (miRNA) is now recognized as key regulator of gene expression at posttranscription level. The public availability of the genome and transcripts of Ascaris suum provides powerful resources for the research of miRNA profiles of the parasite. Therefore, we investigated and compared the miRNA profiles of male and female adult A. suum using Solexa deep sequencing combined with bioinformatic analysis and stem-loop reverse transcription polymerase chain reaction. Deep sequencing of small RNAs yielded 11.71 and 11.72 million raw reads from male and female adults of A. suum, respectively. Analysis showed that the noncoding RNA of the two genders, including tRNA, rRNA, snRNA, and snoRNA, were similar. By mapping to the A. suum genome, we obtained 494 and 505 miRNA candidates from the female and male parasite, respectively, and 87 and 82 of miRNA candidates were consistent with A. suum miRNAs deposited in the miRBase database. Among the miRNA candidates, 154 were shared by the two genders, and 340 and 351 were female and male specific with their target numbers ranged from one to thousands, respectively. Functional prediction revealed a set of elongation factors, heat shock proteins, and growth factors from the targets of gender-specific miRNAs, which were essential for the development of the parasite. Moreover, major sperm protein and nematode sperm cell motility protein were found in targets of the male-specific miRNAs. Ovarian message protein was found in targets of the female-specific miRNAs. Enrichment analysis revealed significant differences among Gene Ontology terms of miRNA targets of the two genders, such as electron carrier and biological adhesion process. The regulating functions of gender-specific miRNAs was therefore not only related to the fundamental functions of cells but also were essential to the germ development of the parasite. The present study provides a framework for further research of Ascaris miRNAs, and consequently leads to the development of potential nucleotide vaccines against Ascaris of human and animal health significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Antebi A (2012) Regulation of longevity by the reproductive system. Exp Gerontol. doi:10.1016/j.exger.2012.09.009

  • Ai L, Xu MJ, Chen MX, Zhang YN, Chen SH, Guo J, Cai YC, Zhou XN, Zhu XQ, Chen JX (2011) Characterization of microRNAs in Taenia saginata of zoonotic significance by solexa deep sequencing and bioinformatics analysis. Parasitol Res 110:2373–2378

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) microRNAs genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Cantacessi C, Zou FC, Hall RS, Zhong W, Jex AR, Campbell BE, Ranganathan S, Sternberg PW, Zhu XQ, Gasser RB (2009) Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. Mol Cell Probes 23:205–217

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Chiba Y, Hijikata T (2010) MicroRNAs and their therapeutic potential for human diseases: preface. J Pharmacol Sci 114:262–263

    Article  PubMed  CAS  Google Scholar 

  • Crompton DW (2001) Ascaris and ascariasis. Adv Parasitol 48:285–375

    Article  PubMed  CAS  Google Scholar 

  • de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19:547–551

    Article  PubMed  Google Scholar 

  • Dold C, Holland CV (2011) Ascaris and ascariasis. Microbes Infect 13:632–637

    Article  PubMed  Google Scholar 

  • Goździk K, Engström A, Höglund J (2012) Optimization of in-house ELISA based on recombinant major sperm protein (rMSP) of Dictyocaulus viviparus for the detection of lungworm infection in cattle. Res Vet Sci 93:813–818

    Article  PubMed  Google Scholar 

  • Du T, Zamore PD (2007) Beginning to understand microRNA function. Cell Res 17:661–663

    Article  PubMed  CAS  Google Scholar 

  • Fonseca CT, Braz Figueiredo Carvalho G, Carvalho Alves C, de Melo TT (2012) Schistosoma tegument proteins in vaccine and diagnosis development: an update. J Parasitol Res 2012:541268

    PubMed  Google Scholar 

  • Huang CQ, Gasser RB, Cantacessi C, Nisbet AJ, Zhong W, Sternberg PW, Loukas A, Mulvenna J, Lin RQ, Chen N, Zhu XQ (2008) Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. PLoS Negl Trop Dis 2:e246

    Article  PubMed  Google Scholar 

  • Höglund J, Engström A, Morrison DA, Mineur A, Mattsson JG (2008) Limited sequence variation in the major sperm protein 1 (MSP) gene within populations and species of the genus Dictyocaulus (Nematoda). Parasitol Res 103:11–20

    Article  PubMed  Google Scholar 

  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J, Wang T, Cantacessi C, Schwarz EM, Ranganathan S, Geldhof P, Nejsum P, Sternberg PW, Yang H, Wang J, Wang J, Gasser RB (2011) Ascaris suum draft genome. Nature 479:529–533

    Article  PubMed  CAS  Google Scholar 

  • Joachim A, Dulmer N, Daugschies A, Roepstorff A (2001) Occurrence of helminths in pig fattening units with different management systems in Northern Germany. Vet Parasitol 96:135–146

    Article  PubMed  CAS  Google Scholar 

  • Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed  Google Scholar 

  • Laabs EM, Schnieder T, Strube C (2012) In vitro studies on the sexual maturation of the bovine lungworm Dictyocaulus viviparus during the development of preadult larvae to adult worms. Parasitol Res 110:1249–1259

    Article  PubMed  Google Scholar 

  • Leles D, Gardner SL, Reinhard K, Iniguez A, Araujo A (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors 5:42

    Article  PubMed  Google Scholar 

  • Lewis R, Behnke JM, Stafford P, Holland CV (2009) Dose-dependent impact of larval Ascaris suum on host body weight in the mouse model. J Helminthol 83:1–5

    Article  PubMed  CAS  Google Scholar 

  • Li BW, Rush AC, Crosby SD, Warren WC, Williams SA, Mitreva M, Weil GJ (2005) Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis. Mol Biochem Parasitol 143:49–57

    Article  PubMed  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Myers EM (2012) Gαo and Gαq regulate the expression of daf-7, a TGFβ-like gene, in Caenorhabditis elegans. PLoS One 7:e40368

    Article  PubMed  CAS  Google Scholar 

  • Nisbet AJ, Gasser RB (2004) Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematoda: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive–subtractive hybridisation. Int J Parasitol 34:633–643

    Article  PubMed  CAS  Google Scholar 

  • Park J, Dickerson TJ, Janda KD (2008) Major sperm protein as a diagnostic antigen for onchocerciasis. Bioorg Med Chem 16:7206–7209

    Article  PubMed  CAS  Google Scholar 

  • Roberts TM, Stewart M (2012) Role of major sperm protein (MSP) in the protrusion and retraction of Ascaris sperm. Int Rev Cell Mol Biol 297:265–293

    Article  PubMed  CAS  Google Scholar 

  • Schunn AM, Forbes A, Schnieder T, Strube C (2012) Validation of a Dictyocaulus viviparus MSP-ELISA and cut-off adjustment in a one-year longitudinal field study in dairy cattle herds. Vet Parasitol 189:291–298

    Article  PubMed  Google Scholar 

  • Strube C, Buschbaum S, Schnieder T (2009) Molecular characterization and real-time PCR transcriptional analysis of Dictyocaulus viviparus major sperm proteins. Parasitol Res 104:543–551

    Article  PubMed  Google Scholar 

  • Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S (2012) The therapeutic potential of microRNAs in cancer. Cancer J 18:275–284

    Article  PubMed  CAS  Google Scholar 

  • Uysal HK, Boral O, Metiner K, Ilgaz A (2009) Investigation of intestinal parasites in pig feces that are also human pathogens. Turkiye Parazitol Derg 33:218–221

    PubMed  Google Scholar 

  • Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21:1462–1477

    Article  PubMed  CAS  Google Scholar 

  • Xu MJ, Liu Q, Nisbet AJ, Cai XQ, Yan C, Lin RQ, Yuan ZG, Song HQ, He XH, Zhu XQ (2010) Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC Genomics 11:521

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Science Fund for Creative Research Groups of Gansu Province (grant No. 1210RJIA006), the National S & T Major Program (grant No. 2012ZX10004220), the Open Funds of the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (grant No. SKLVEB2011KFKT004 and SKLVEB2011KFKT010), the China Postdoctoral Science Foundation (grant No. 201104363 and 20090460064), and the Guangdong Provincial Program for Excellent Ph.D. theses (grant No. sybzzxm201037). The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Quan Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Conserved gender-specific miRNAs of A. suum. (DOCX 18 kb)

Additional file 2

Annotated functions of conserved gender-specific miRNAs of A. suum. (DOCX 17 kb)

Additional file 3

Predicated female targets of female-specific miRNAs by using mRNA and EST deposited in the GenBank. (DOCX 52 kb)

Additional file 4

Predicated male targets of male-specific miRNAs by using mRNA and EST deposited in the GenBank. (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, MJ., Fu, JH., Nisbet, A.J. et al. Comparative profiling of microRNAs in male and female adults of Ascaris suum . Parasitol Res 112, 1189–1195 (2013). https://doi.org/10.1007/s00436-012-3250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3250-x

Keywords

Navigation