Skip to main content

Advertisement

Log in

Integration of botanical and bacterial insecticide against Aedes aegypti and Anopheles stephensi

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study evaluated the Orthosiphon thymiflorus leaf extract and the bacterial insecticide spinosad, testing the first to fourth instars larvae and pupae of two important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi. The fresh leaves of O. thymiflorus were washed thoroughly in tap water and shade-dried at room temperature (28 ± 2 °C) for 5 to 8 days. The air-dried materials were powdered separately using a commercial electrical blender. From the plants, 500 g powder was macerated with 1.5 L organic solvents of petroleum ether sequentially for a period of 72 h each and then filtered. The larval and pupal mortality was observed after 24 h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC50 = 309.16, 337.58, 390.42, 429.68, and 513.34 ppm, and A. aegypti had values of LC50 = 334.78, 366.45, 422.97, 467.94, and 54.02 ppm, respectively. Spinosad against the A. stephensi had values of LC50 = 384.19, 433.39, 479.17, 519.79, and 572.63 ppm, and A. aegypti had values of LC50 = 210.68, 241.20, 264.93, 283.27, and 305.85 ppm, respectively. Moreover, in combined treatment, the A. stephensi had values of LC50 = 202.36, 224.76, 250.84, 288.05, and 324.05 ppm, and A. aegypti had values of LC50 = 217.70, 246.04, 275.36, 315.29, and 353.80 ppm, respectively. Results showed that the leaf extract of O. thymiflorus and bacterial insecticide spinosad are promising as a good larvicidal and pupicidal against dengue vector, A. aegypti and malarial vector, A. stephensi. This is an ideal eco-friendly approach for the control of target species of vector control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarthi N, Murugan K (2010) Larvicidal and repellent activity of Vetiveria zizanioides L, Ocimum basilicum Linn and the microbial pesticide spinosad against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). J Biopest 3(1):199–204

    Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266

    CAS  Google Scholar 

  • Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and A. albopictus (Diptera: Culicidae). J Med Entomol 35:943–947

    PubMed  CAS  Google Scholar 

  • Allen RA, Lewis CN, Meisch MV (2010) Residual efficacy of three spinosad formulations against Psorophora columbiae larvae in small rice plots. J Am Mosq Control Assoc 26:116–118

    Article  PubMed  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Anderson JF, Ferrandino FJ, Dingman DW, Main AJ, Andreadis TG, Becnel JJ (2011) Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, and spinosad. J Am Mosq Control Assoc 27:45–55

    Article  PubMed  Google Scholar 

  • Armengol G, Hernandez J, Velez JG, Orduz S (2006) Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99:1590–1595

    Article  PubMed  Google Scholar 

  • Attaran A, Roberts DR, Curtis CF, Kilama WL (2000) Balancing risks on the backs of the poor. Nature Medicine 6:729–731

    Article  PubMed  CAS  Google Scholar 

  • Bahgat IM, El Kady GA, Temerak SA, Lysandrou M (2007) The natural bio-insecticide spinosad and its toxicity to combat some mosquito species in Ismailia Governorate, Egypt. World J Agric Sci 3:396–400

    Google Scholar 

  • Becker ND, Petriæ MZ, Boase C, Dahl C, Lane J, Kaiser A (2003) Mosquitoes and their control. Kluwer/Plenum, New York

    Book  Google Scholar 

  • Beehler JW, Mulla MS (1993) Effect of the insect growth regulator methoprene on the ovipositional behavior of Aedes aegypti and Culex quinquefasciatus. J Am Mosq Control Assoc 9:13–16

    PubMed  CAS  Google Scholar 

  • Bond JG, Marina CF, Williams T (2004) The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med Vet Entomol 18:50–56

    Article  PubMed  CAS  Google Scholar 

  • Brands SJ (1989) The taxonomicon. Universal Taxonomic Services, Zwaag, The Netherlands. Accessed January 15, 2012

  • Burfield T, Reekie SL (2005) Mosquitoes, malaria and essential oils. Int J Aroma 15:30–41

    Article  CAS  Google Scholar 

  • Cetin H, Yanikoglu A, Cilek JE (2005) Evaluation of the naturally-derived insecticide spinosad against Culex pipiens L. (Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. J Vect Ecol 30:151–154

    Google Scholar 

  • Cisneros J, Goulson D, Derwent LC, Penagos DI, Hernández O, Williams T (2002) Toxic effects of spinosad on predatory insects. Biol Control 23:156–163

    Article  CAS  Google Scholar 

  • Cleveland CB, Bormett GA, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L, Balcer JL (2002) Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems. J Agric Food Chem 50:3244–3256

    Article  PubMed  CAS  Google Scholar 

  • Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit “skip oviposition. Physiol Entomol 18:114–118

    Article  Google Scholar 

  • Curtis CF, Davis CR (2001) Present use of pesticides for vector and allergen control and future requirements. Medical and Veterinary Entomology 8:231–235

    Article  Google Scholar 

  • Darriet F, Duchon S, Hougard JM (2005) Spinosad: a new larvicide against insecticide-resistant mosquito larvae. J Am Mosq Control Assoc 21:495–496

    Article  PubMed  CAS  Google Scholar 

  • Darriet F, Marcombe S, Etienne M, Yébakima A, Agnew P, Yp-Tcha MM, Corbel V (2010) Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies). Parasit Vectors 3:88

    Article  PubMed  Google Scholar 

  • Dat DD, Ham NN, Khac DH, Lam NT, Son PT, van Dau N (1992) Studies on the individual and combined diuretic effects of four Vietnamese traditional herbal remedies (Zea mays, Imperata cylindrica, Plantago major and Orthosiphon stamineus). J Ethnopharmacol 36:225–231

    Article  Google Scholar 

  • Fay RW, Eliason DA (1966) A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq News 26:531–535

    Google Scholar 

  • Filho ECO, Paumgartten FJ (2000) Toxicity of Euphorbia milii latex and niclosamide to snails and nontarget aquatic species. Ecotoxicol Environ Saf 46(3):342–350

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London. pp.68–78

  • Gould F, Anderson A, Landis D, Van Mellaert J (1991) Feeding behaviour and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol Exp Appl 58:199–210

    Google Scholar 

  • Gubler DJ (1998) Dengue. In: Monath TP (ed) The arboviruses epidemiology and ecology. CRC Press, Boca Raton, pp 223–260

    Google Scholar 

  • Guha-Sapir D, Schimme B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2:1

    Article  PubMed  Google Scholar 

  • Gurubatam J, Jayakar B, Majumdar UK, Gupta M, Kavimani S, Ilango R (1997) Acetylcholine antagonistic action of aqueous extract of Orthosiphon thymiflorus. Ind J Pharm Sci 59(5):271–272

    Google Scholar 

  • Harrington LC, Edman JD (2001) Indirect evidence against delayed “skip-oviposition” behavior by Aedes aegypti (Diptera: Culicidae) in Thailand. J Med Entomol 38:641–645

    Article  PubMed  CAS  Google Scholar 

  • Hertlein MB, Mavrotas C, Jousseaume C, Lysandrou M, Thompson GD, Jany W, Richie SA (2010) A review of spinosad as a natural mosquito product for larval mosquito control. J Amer Mosq Contr Assoc 26:67–87

    Article  CAS  Google Scholar 

  • Jiang Y, Mulla MS (2009) Laboratory and field evaluation of spinosad, a biorational natural product, against larvae of Culex mosquitoes. J Am Mosq Control Assoc 25:456–466

    Article  PubMed  CAS  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Kavimani S, Ilango R, Thangadurai JG, Jayakar B, Maumdar UK, Gupta M (1997) Diuretic activity of aqueous extract of Orthosiphon thymiflorus in rats. Indian J Pharmaceutical Sci 64:96–98

    Google Scholar 

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Thiyagarajan P, Naresh Kumar, Abirami D, Asaikkutti A (2009) Impact of climate change on the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). In: International Congress of Global Warming on Biodiversity of Insects: Management and Conservation, 9–12 February 2009, Tamil Nadu, India, p 62

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012a) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleensen. (Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) Asian Pac J Trop Med 412–420

  • Kovendan K, Murugan K, Vincent S (2012b) Mosquitocidal efficacy of Orthosiphon thymiflorus (Roth) sleesen. (Family: Labiatae) leaf extract and microbial insecticide, Metarhizium anisopliae against dengue vector, Aedes aegypti (Diptera: Culicidae). Diversity Physiol Proc 137–151

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012c) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012d) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  Google Scholar 

  • Kovendan K, Murugan K, Naresh Kumar A, Vincent S, Hwang JS (2012e) Bio-efficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:669–678

    Article  Google Scholar 

  • Kovendan K, Murugan K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S, Barnard DR (2012f) Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110:2105–2115

    Article  Google Scholar 

  • Kovendan K, Murugan K, Prasanna Kumar K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S (2012g) Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against the mosquito vectors. Parasitol Res 111:531–544

    Article  Google Scholar 

  • Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012h) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111:1025–1035

    Article  Google Scholar 

  • Kovendan K, Murugan K, Shanthakumar SP, Vincent S (2012i) Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Parasitol Res 111:1481–1490

    Article  Google Scholar 

  • Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop Sao Paulo 48(4):211–214

    Article  PubMed  Google Scholar 

  • Liu S, Li QX (2004) Photolysis of spinosyns in seawater, stream water and various aqueous solutions. Chemosphere 56:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Ludlum CT, Felton G, Duffey SS (1991) Plant defense: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thruringiensis subsp. kurstaki to Heliothis zea. J Chem Ecol 17:217–237

    Article  CAS  Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amerasan D (2012a) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110:2541–2550

    Article  PubMed  Google Scholar 

  • Marcombe S, Darriet F, Agnew P, Etienne M, Yp-Tcha MM, Yébakima A, Corbel V (2011) Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies). AmJTrop Med Hyg 84:118–126

    Article  Google Scholar 

  • Marina CF, Bond JG, Casas M, Muñoz J, Orozco A, Valle J, Williams T (2011) Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Pest Man Sci 67:114–121

  • Masuda T, Masuda K, Shiragami S, Jitoe A, Nakatani N (1992) Orthosiphols A and B novel diterpenoid inhibitors of TPA (12-Otetradecanoylphorbol-13-acetate)-induced inflammation, from Orthosiphon stamineus. Tetrahedron 48:6787–6792

    Article  CAS  Google Scholar 

  • Mather TN, DeFoliart GR (1983) Repellency and initial toxicity of Abate and Dursban formulations to Aedes triseriatus in oviposition sites. Mosq News 43:474–479

    CAS  Google Scholar 

  • Mathivanan T, Govindarajan M, Elumalai K, Krishnappa K, Ananthan A (2010) Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). J Vector Borne Dis 47:178–180

    Google Scholar 

  • Mittal PK, Adak T, Subbarao SK (2005) Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of An. stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci 89:442–443

    Google Scholar 

  • Monath TP (1994) Yellow fever and dengue-the interactions of virus, vector and host in the re-emergence of epidemic disease. Semin Virol 5:133–135

    Article  Google Scholar 

  • Moore CG (1977) Insecticide avoidance by ovipositing Aedes aegypti. Mosq News 37:291–293

    Google Scholar 

  • Morais SM, Cavalcanti ES, Bertini LM, Oliveira CL, Rodrigues JR, Cardoso JH (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc 22(1):161–164

    Article  PubMed  CAS  Google Scholar 

  • Murugan K, Thangamathi P, Jeyabalan D (2002) Interactive effect of botanical and Bacillus thuringiensis subsp. israelensis on Culex quinquefasciatus Say. J Sci Ind Res 61:1068–1076

    Google Scholar 

  • Pates H, Curtis C (2005) Mosquito behavior and vector control. Annu Rev Entomol 50:53–70

    Article  PubMed  CAS  Google Scholar 

  • Perez CM, Marina CF, Bond JG, Rojas JC, Valle J, Williams T (2007) Spinosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. J Med Entomol 44(4):631–638

    Article  PubMed  CAS  Google Scholar 

  • Prabhu K, Murugan K, Nareshkumar A, Badeeswaran S (2011) Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi. Asian Pacif J Trop Med 4:610–613

    Article  CAS  Google Scholar 

  • Reddy KN, Pattanaik C, Reddy CS, Murthy EN, Raju VS (2008) Plants used in traditional handicrats in Northeastern Andhra Pradesh. Ind J Trad Knowledge 7(1): 162-165

    Google Scholar 

  • Romi R, Proietti S, Di Luca M, Cristofaro M (2006) Laboratory evaluation of the bioinsecticide spinosad for mosquito control. J Am Mosq Control Assoc 22:93–96

    Article  PubMed  CAS  Google Scholar 

  • Sadanandane C, Boopathi-Doss PS, Jambulingam P, Zaim M (2009) Efficacy of two formulations of the bioinsecticide spinosad against Culex quinquefasciatus in India. J Am Mosq Control Assoc 25:66–73

    Article  PubMed  CAS  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiology correlates. Pest Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 2:237–244

    Google Scholar 

  • Sharma VP (1996) Reemergence of malaria in India. Ind J Med Res 103:26–45

    CAS  Google Scholar 

  • Sleensen-Sini KR, Haribabu Y, Sangeetha PT (2011) Antioxidant potential of leaf extract of Orthosiphon thymiflorus (Roth). Int J Pharm Tech Res 3(2):955–959

    Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    PubMed  CAS  Google Scholar 

  • Thavara U, Tawatsin A, Asavadachanukorn P, Mulla MS (2009) Field evaluation in Thailand of spinosad, a larvicide derived from Saccharopolyspora spinosa (Actinomycetales) against Aedes aegypti (L.) larvae. SE Asian J Trop Med Public Health 40:235–242

    CAS  Google Scholar 

  • Thompson GD, Dutton R, Sparks TC (2000) Spinosad case study: an example from a natural products discovery programme. Pest Manag Sci 56:696–702

    Article  CAS  Google Scholar 

  • Thompson DG, Harris BJ, Buscarini TM, Chartrand DT (2002) Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag Sci 58:397–404

    Article  PubMed  CAS  Google Scholar 

  • Verma KVS (1986) Deterrent effect of synthetic pyrethroids on the oviposition of mosquitoes. Curr Sci 55:373–375

    CAS  Google Scholar 

  • Vezzani D, Rubio A, Velazquez SM, Schweigmann N, Wiegand T (2005) Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Trop 95:123–131

    Article  PubMed  CAS  Google Scholar 

  • Walker K (2000) Cost-comparison of DDT and alternative insecticides for malaria control. Med Vet Entomol 14:345–354

    Article  PubMed  CAS  Google Scholar 

  • WHO (1995) Vector control for malaria and other mosquito borne diseases. Report of a WHO study group. Technical report series no. 857. World Health Organization, Geneva

  • WHO (1998) Dengue hemorrhagic fever. Diagnosis, treatment prevention and control. World Health Organization, Ginebra, Suiza

  • WHO (2007) Scientific Working Group report on dengue (WHO. Switzerland, Geneva

    Google Scholar 

  • WHO (2010) Global information system on alcohol and health. Geneva, (www.who.int/globalatlas/DataQuery/default.asp)

  • Williams T, Valle J, Vinuela E (2003) Is the naturally derived insecticide spinosad compatible with insect natural enemies? Biocontrol Sci Technol 13:459–475

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission (UGC), Govt. of India, New Delhi, for providing financial support for the present work. The authors are grateful to Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University, for the laboratory facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh Kumar, P., Kovendan, K. & Murugan, K. Integration of botanical and bacterial insecticide against Aedes aegypti and Anopheles stephensi . Parasitol Res 112, 761–771 (2013). https://doi.org/10.1007/s00436-012-3196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3196-z

Keywords

Navigation