Skip to main content

Advertisement

Log in

The second transcribed spacer rDNA sequence: an effective genetic marker for inter-species phylogenetic analysis of trematodes in the order Strigeata

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, the second nuclear internal transcribed spacer (ITS-2) rDNA of Schistosoma japonicum isolates in mainland China was amplified, sequenced, and assessed for inferring the intra- and inter-species phylogenetic relationships of trematodes in the order Strigeata. The fragment containing ITS-2 rDNA was obtained from 24 S. japonicum isolates from eight epidemic provinces in mainland China. The length polymorphisms were observed among these ITS-2 rDNA sequences, ranging from 343 to 346 bp, and the intra- and inter-population variations in ITS-2 sequence were 0.0–2.1 % among S. japonicum isolates in China. Phylogenetic analyses using the maximum parsimony and maximum likelihood methods revealed that the ITS-2 rDNA sequence is not a suitable marker for studying inter- and intra-population variation in S. japonicum. However, phylogenetic analysis of trematodes in the order Strigeata indicated that the ITS-2 rDNA sequence provides an effective molecular marker for studying inter-species phylogenetic relationships among trematodes in this order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldhoun JA, Kolárová L, Horák P, Skírnisson K (2009) Bird schistosome diversity in Iceland: molecular evidence. J Helminthol 83:173–180

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Ai L, Song HQ, Ali S, Lin RQ, Seyni B, Issa G, Zhu XQ (2008) Genetic characterisation of Fasciola samples from different host species and geographical localities revealed the existence of F. hepatica and F. gigantica in Niger. Parasitol Res 102:1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Bell AS, Sommerville C, Tellervo Valtonen E (2001) A molecular phylogeny of the genus Ichthyocotylurus (Digenea, Strigeidae). Int J Parasitol 31:833–842

    Article  PubMed  CAS  Google Scholar 

  • Bowles J, Blair D, McManus DP (1995) A molecular phylogeny of the human schistosomes. Mol Phylogenet Evol 4:103–109

    Article  PubMed  CAS  Google Scholar 

  • Brant SV, Loker ES (2009) Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J Parasitol 95:941–963

    Article  PubMed  CAS  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    PubMed  CAS  Google Scholar 

  • Chilton NB, Gasser RB, Beveridge I (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). Int J Parasitol 25:647–651

    Article  PubMed  CAS  Google Scholar 

  • Cribb TH, Bray RA, Littlewood DT (2001) The nature and evolution of the association among digeneans, molluscs and fishes. Int J Parasitol 31:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Galazzo DE, Dayanandan S, Marcogliese DJ, McLaughlin JD (2002) Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool 80:2207–2217

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum–likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, Iwagami M, Littlewood DT, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP (2000a) Phylogenies inferred from mitochondrial gene orders—a cautionary tale from the parasitic flatworms. Mol Biol Evol 17:1123–1125

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Blair D, McManus DP (2000b) Mitochondrial DNA sequences of human schistosomes: the current status. Int J Parasitol 30:283–290

    Article  PubMed  CAS  Google Scholar 

  • Li L, Yu LY, Zhu XQ, Wang CR, Zhai YQ, Zhao JP (2008) Orientobilharzia turkestanicum is grouped within African schistosomes based on phylogenetic analyses using sequences of mitochondrial genes. Parasitol Res 102:939–943

    Article  PubMed  CAS  Google Scholar 

  • Li T, He S, Zhao H, Zhao G, Zhu XQ (2010a) Major trends in human parasitic diseases in China. Trends Parasitol 26:264–270

    Article  PubMed  Google Scholar 

  • Li J, Zhao GH, Zou FC, Mo XH, Yuan ZG, Ai L, Li HL, Weng YB, Lin RQ, Zhu XQ (2010b) Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes. Parasitol Res 107:561–569

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). Sinauer Associate, Sunderland

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tkach V, Pawlowski J, Mariaux J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. Int J Parasitol 30:83–93

    Article  PubMed  CAS  Google Scholar 

  • Wang CR, Li L, Ni HB, Zhai YQ, Chen AH, Chen J, Zhu XQ (2009) Orientobilharzia turkestanicum is a member of Schistosoma genus based on phylogenetic analysis using ribosomal DNA sequences. Exp Parasitol 121:193–197

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang CR, Zhao GH, Gao JF, Li MW, Zhu XQ (2011) The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infect Genet Evol 11:1964–1970

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Li J, Zou FC, Liu W, Mo XH, Lin RQ, Yuan ZG, Weng YB, Song HQ, Zhu XQ (2009a) Heterogeneity of class I and class II MHC sequences in Schistosoma japonicum from different endemic regions in mainland China. Parasitol Res 106:201–206

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Li J, Zou FC, Mo XH, Yuan ZG, Lin RQ, Weng YB, Zhu XQ (2009b) ISSR, an effective molecular approach for studying genetic variability among Schistosoma japonicum isolates from different provinces in mainland China. Infect Genet Evol 9:903–907

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Mo XH, Zou FC, Li J, Weng YB, Lin RQ, Xia CM, Zhu XQ (2009c) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 62:67–74

    Article  Google Scholar 

  • Zhao GH, Li J, Lin RQ, Zou FC, Liu W, Yuan ZG, Mo XH, Song HQ, Weng YB, Zhu XQ (2010) An effective sequence characterized amplified region-PCR method derived from restriction site-amplified polymorphism for the identification of female Schistosoma japonicum of zoonotic significance. Electrophoresis 31:641–647

    Article  PubMed  CAS  Google Scholar 

  • Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, Chen XY, Zheng J, Utzinger J (2005) The public health significance and control of schistosomiasis in China—then and now. Acta Trop 96:97–105

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Project support was provided, in part, by the National Natural Science Foundation of China (grant no. 30960280), The Program for Outstanding Scientists in Agricultural Research, National Basic Research Program (973 Program) of China (grant no. 2007CB513104), the Open Funds of the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (grant nos. SKLVEB2011KFKT011, SKLVEB2010KFKT009, SKLVEB2009KFKT008, SKLVEB2011KFKT010, and SKLVEB2011KFKT004), the Special Funds for Talents in Northwest A & F University (Z109021107 and 2010BSJJ015), and the Yunnan Provincial Program for Introducing High-level Scientists (grant no. 2009CI125). The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G.H., Li, J., Mo, X.H. et al. The second transcribed spacer rDNA sequence: an effective genetic marker for inter-species phylogenetic analysis of trematodes in the order Strigeata. Parasitol Res 111, 1467–1472 (2012). https://doi.org/10.1007/s00436-012-2981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2981-z

Keywords

Navigation