Skip to main content

Advertisement

Log in

Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study studied the genetic variation among Schistosoma japonicum isolates from different endemic regions in mainland China and examined the phylogenetic relationships of zoonotic trematodes using the combined mitochondrial 16S and 12S ribosomal DNA sequences. The fragments of 16S and 12S rDNA were amplified from 22 S. japonicum isolates, and sequenced, and the relevant sequences of other nine trematode species belonging to six genera in four families were downloaded from GenBank, and their phylogenetic relationships were re-constructed by unweighted pair-group method with arithmetic averages analyses using the combined 16S and 12S rDNA sequences, with Trichinella spiralis as outgroup. The results showed that the partial sequences of mitochondrial 16S and 12S rDNA of S. japonicum were 757 and 797 bp, respectively, and they were quite conserved among the S. japonicum isolates. Phylogenetic analysis revealed that the combined 16S and 12S rDNA sequences were not able to distinguish S. japonicum isolates in mountainous areas from those in lake/marshland areas in mainland China. However, the combined sequences could distinguish different species of zoonotic trematodes. Therefore, the combined mitochondrial 16S and 12S rDNA sequences provide an effective molecular marker for the inter-species phylogenetic analysis and differential identification of zoonotic trematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bøgh HO, Zhu XQ, Qian BZ, Gasser RB (1999) Scanning for nucleotide variations in mitochondrial DNA fragments of Schistosoma japonicum by single-strand conformation polymorphism. Parasitology 118:73–82

    Article  PubMed  Google Scholar 

  • Bowles J, Hope M, Tiu WU, Liu X, McManus DP (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Trop 55:217–229

    Article  CAS  PubMed  Google Scholar 

  • Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Meth Mol Biol 132:71–91

    CAS  Google Scholar 

  • Chai JY, Darwin Murrell K, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254

    Article  PubMed  Google Scholar 

  • Chilton NB, Gasser RB, Beveridge I (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). Int J Parasitol 25:647–651

    Article  CAS  PubMed  Google Scholar 

  • Dorny P, Praet N, Deckers N, Gabriel S (2009) Emerging food-borne parasites. Vet Parasitol 163:196–206

    Article  CAS  PubMed  Google Scholar 

  • Hay JM, Ruvinsky I, Hedges SB, Maxon LR (1995) Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes. Mol Biol Evol 12:928–937

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Králová-Hromadová I, Spakulová M, Horácková E, Turceková L, Novobilský A, Beck R, Koudela B, Marinculić A, Rajský D, Pybus M (2008) Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol 94:58–67

    Article  PubMed  Google Scholar 

  • Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, Iwagami M, Littlewood DT, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP (2000a) Phylogenies inferred from mitochondrial gene orders—a cautionary tale from the parasitic flatworms. Mol Biol Evol 17:1123–1125

    CAS  PubMed  Google Scholar 

  • Le TH, Blair D, McManus DP (2000b) Mitochondrial DNA sequences of human schistosomes: the current status. Int J Parasitol 30:283–290

    Article  CAS  PubMed  Google Scholar 

  • Le TH, Blair D, McManus DP (2002) Mitochondrial genomes of parasitic flatworms. Trends Parasitol 18:206–213

    Article  CAS  PubMed  Google Scholar 

  • Littlewood DT, Lockyer AE, Webster BL, Johnston DA, Le TH (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 39:452–467

    Article  CAS  PubMed  Google Scholar 

  • Mas-Coma S, Bargues MD, Valero MA (2005) Fasciolisis and other plant-borne trematode zoonoses. Int J Parasitol 35:1255–1278

    Article  CAS  PubMed  Google Scholar 

  • McGuire JA, Linkem CW, Koo MS, Hutchison DW, Lappin AK, Orange DI, Lemos-Espinal J, Riddle BR, Jaeger JR (2007) Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards. Evolution 61:2879–2897

    Article  CAS  PubMed  Google Scholar 

  • Niu AO, Xiong YW, Feng YR (2002) Schistsoma japonicum strains: differentiation by RAPD and SSR-PCR. Southeast Asian J Trop Med Pub Health 33:720–724

    CAS  Google Scholar 

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Shrivastava J, Qian BZ, Mcvean G, Webster JP (2005) An insight into the genetic variation of Schistosoma japonicum in mainland China using DNA microsatellite markers. Mol Ecol 14:839–849

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco

    Google Scholar 

  • Sørensen E, Drew AC, Brindley PJ, Bogh HQ, Gasser RB, Qian BZ, Chiping Q, McManus DP (1998) Variation in the sequence of a mitochondrial NADH dehydrogenase I gene fragment among six natural populations of Schistosoma japonicum from China. Int J Parasitol 28:1931–1934

    Article  PubMed  Google Scholar 

  • Sørensen E, Bøgh HO, Johansen MV, McManus DP (1999) PCR-based identification of individuals of Schistosoma japonicum representing different subpopulations using a genetic marker in mitochondrial DNA. Int J Parasitol 29:1121–1128

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4 0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Zhao HY (1998) Zoonotic parasitic diseases. Northeast Korean Nationality Education Press, Changchun, pp 69–344

    Google Scholar 

  • Zhao GH, Mo XH, Zou FC, Li J, Weng YB, Lin RQ, Xia CM, Zhu XQ (2009a) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 162:67–74

    Article  CAS  PubMed  Google Scholar 

  • Zhao GH, Li J, Zou FC, Mo XH, Yuan ZG, Lin RQ, Weng YB, Zhu XQ (2009b) ISSR, an effective molecular approach for studying genetic variability among Schistosoma japonicum isolates from different provinces in mainland China. Infect Genet Evol 9:903–907

    Article  CAS  PubMed  Google Scholar 

  • Zhao GH, Li J, Zou FC, Liu W, Mo XH, Lin RQ, Yuan ZG, Weng YB, Song HQ, Zhu XQ (2010) Heterogeneity of class I and class II MHC sequences in Schistosoma japonicum from different endemic regions in mainland China. Parasitol Res 106:201–206

    Article  Google Scholar 

  • Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, Chen XY, Zheng J, Utzinger J (2005) The public health significance and control of schistosomiasis in China—then and now. Acta Trop 96:97–105

    Article  PubMed  Google Scholar 

  • Zhou P, Chen N, Zhang RL, Lin RQ, Zhu XQ (2008) Food-borne parasitic zoonoses in China: perspective for control. Trends Parasitol 24:190–196

    Article  PubMed  Google Scholar 

  • Zhu XQ, Bøgh H, Gasser RB (1999) Dideoxy fingerprinting of low-level nucleotide variation in mitochondrial DNA of the human blood fluke, Schistosoma japonicum. Electrophoresis 20:2830–2833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by the National Basic Research Program (973 program) of China (Grant No. 2007CB513104), the Yunnan Provincial Program for Introducing High-level Scientists (Grant No. 2009CI125), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0723) to XQZ, and the National Natural Science Foundation of China (Grant No. 30960280) to FCZ. Professor Baozhen Qian of Bioengineering Institute, Zhejiang Academy of Medical Sciences was thanked for providing some S. japonicum samples used in the present study. The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Multiple sequence alignments of combined mitochondrial 12S and 16S rDNA (DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhao, G.H., Zou, F.C. et al. Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes. Parasitol Res 107, 561–569 (2010). https://doi.org/10.1007/s00436-010-1895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1895-x

Keywords

Navigation