Skip to main content
Log in

Comparative immunohistochemistry of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The structure and function of the central nervous systems of opisthobranch gastropods have been studied extensively. However, the organisation and function of the peripheral nervous system are poorly understood. The cephalic sensory organs (CSOs) are known to be chemosensory structures in the head region of opisthobranchs. In the present study, we used immunohistochemical methods and confocal laserscanning microscopy to comparatively examine the CSOs of different opisthobranchs, namely Acteon tornatilis, Aplysia punctata, Archidoris pseudoargus and Haminoea hydatis. We wanted to characterise sensory epithelia in order to infer the function of sensory structures and the organs they constitute. Immunoreactivity against the three antigens tyrosine hydroxylase, FMRFamide and serotonin was very similar in the CSOs of all investigated species. Tyrosine hydroxylase-like immunoreactivity was detected primarily in subepidermal sensory cell bodies, which were much more abundant in the anteriorly situated CSOs. This observation indicates that these cells and the respective organs may be involved in contact chemoreception and mechanoreception. The dominant features of FMRFamide-like immunoreactivity, especially in the posterior CSOs, were tightly knotted fibres which reveal glomerulus-like structures. This suggests an olfactory role for these organs. Serotonin-like immunoreactivity was detected in an extensive network of efferent fibres, but was not found within any peripheral cell bodies. Serotonin-like immunoreactivity was found in the same glomerulus-like structures as FMRFamide-like immunoreactivity, indicating a function of serotonin in the efferent control of olfactory inputs. Besides this functional implication, this study could also add some knowledge on the doubtful homology of the CSOs in opisthobranch gastropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Audesirk TE (1975) Chemoreception in Aplysia californica. I. Behavioral localization of distance chemoreceptors used in food-finding. Behav Biol 15:45–55. doi:10.1016/S0091-6773(75)92066-0

    Article  PubMed  CAS  Google Scholar 

  • Bicker G, Davis WJ, Matera EM (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchaea californica. II. Neuroanatomical and intracellular analysis of afferent pathways. J Comp Physiol 149:235–250. doi:10.1007/BF00619217

    Article  Google Scholar 

  • Boudko DY, Switzer-Dunlap M, Hadfield MG (1999) Cellular and subcellular structure of anterior sensory pathways in Phestilla sibogae (Gastropoda, Nudibranchia). J Comp Neurol 403:39–52. doi: 10.1002/(SICI)1096-9861(19990105)403:1≤39::AID-CNE4≥3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  • Cardot J, Fellman D (1983) Immunofluorescent evidence of an FMRFamide-like peptide in the peripheral nervous system of the gastropod mollusc Helix aspersa. Neurosci Lett 43:167–172. doi:10.1016/0304-3940(83)90182-9

    Article  PubMed  CAS  Google Scholar 

  • Chase R (1979) Photic sensitivity of the rhinophore in Aplysia. Can J Zool 57:698–701

    Article  Google Scholar 

  • Chase R (2002) Behavior and its neural control in gastropod molluscs. Oxford University Press, New York

    Google Scholar 

  • Chase R, Tolloczko B (1986) Synaptic glomeruli in the olfactory system of a snail, Achatina fulica. Cell Tissue Res 246:567–573. doi:10.1007/BF00215198

    Article  Google Scholar 

  • Chiasson BJ, Baker MW, Croll RP (1994) Morphological changes and functional recovery following axotomy of a serotonergic cerebrobuccal neurone in the land snail Achatina fulica. J Exp Biol 192:147–167

    PubMed  CAS  Google Scholar 

  • Cooke IRC, Gelperin A (1988) Distribution of FMRFamide-like immunoreactivity in the nervous system of the slug Limax maximus. Cell Tissue Res 253:69–76

    PubMed  CAS  Google Scholar 

  • Cottrell GA (1989) The biology of the FMRFamide-series of peptides in molluscs with special reference to Helix. Comp Biochem Physiol 93A(1):41–45. doi:10.1016/0300-9629(89)90189-8

    Article  CAS  Google Scholar 

  • Croll RP (1983) Gastropod chemoreception. Biol Rev Camb Philos Soc 58:293–319. doi:10.1111/j.1469-185X.1983.tb00391.x

    Article  Google Scholar 

  • Croll RP (1987) Distribution of monoamines in the central nervous system of the nudibranch gastropod, Hermissenda crassicornis. Brain Res 405:337–347. doi:10.1016/0006-8993(87)90303-9

    Article  PubMed  CAS  Google Scholar 

  • Croll RP (2001) Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 441:91–105. doi:10.1002/cne.1399

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Boudko DY, Hadfield MG (2001) Histochemical survey of transmitters in the central ganglia of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 305:417–432. doi:10.1007/s004410100394

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Boudko DY, Pires A, Hadfield MG (2003) Transmitter contents of cells and fibres in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 314:437–448. doi:10.1007/s00441-003-0778-1

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Staubauch S, Klussmann-Kolb A (2004) FMRFamide-like immunoreactivity in the central nervous systems and periphery of Aplysia californica. World Congress of Malacology, Perth, Australia

  • Davis WJ, Matera EM (1982) Chemoreception in gastropod molluscs: electron microscopy of putative receptor cells. J Neurobiol 13(1):79–84. doi:10.1002/neu.480130109

    Article  PubMed  CAS  Google Scholar 

  • Dayrat B, Tillier S (2002) Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluation of morphological characters. Zool J Linn Soc 135:403–470. doi:10.1046/j.1096-3642.2002.00018.x

    Article  Google Scholar 

  • Dayrat B, Tillier A, Lecointre G, Tillier S (2001) New clades of euthyneuran gastropods (Mollusca) from 28S rRNA sequences. Mol Phyl Evol 19(2):225–235. doi:10.1006/mpev.2001.0926

    Article  CAS  Google Scholar 

  • Edlinger K (1980) Zur Phylogenie der chemischen Sinnesorgane einiger Cephalaspidea (Mollusca-Opisthobranchia). Z Zool Syst Evol 18:241–256

    Google Scholar 

  • Elekes K (1992) Neurotransmitters in the gastropod CNS: comparative immunocytochemistry. Acta Biol Hung 43(1–4):213–220

    PubMed  CAS  Google Scholar 

  • Elekes K, Nässel DR (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 262:177–190. doi:10.1007/BF00327760

    Article  CAS  Google Scholar 

  • Elekes K, Kemenes G, Hiripi L, Geffard M, Benjamin PR (1991) Dopamine-immunoreactive neurones in the central nervous system of the pond snail Lymnaea stagnalis. J Comp Neurol 307:214–224. doi:10.1002/cne.903070205

    Article  PubMed  CAS  Google Scholar 

  • Emery DG (1992) Fine structure of olfactory epithelia of gastropod molluscs. Microsc Res Tech 22:307–324. doi:10.1002/jemt.1070220402

    Article  PubMed  CAS  Google Scholar 

  • Emery DG, Audesirk TE (1978) Sensory cells in Aplysia. J Neurobiol 9:173–179. doi:10.1002/neu.480090207

    Article  PubMed  CAS  Google Scholar 

  • Göbbeler K, Klussmann-Kolb A (2007) A comparative ultrastructural investigation of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda). Tissue Cell 39(6):399–414. doi:10.1016/j.tice.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  • Gosliner TM (1994) Gastropoda: Opisthobranchia. Microscopic anatomy of invertebrates Volume 5. Mollusca I:253–355

  • Hernadi L, Elekes K (1999) Topographic organization of serotonergic and dopaminergic neurons in the cerebral ganglia and their peripheral projection patterns in the head areas of the snail Helix pomatia. J Comp Neurol 411:274–287. doi: 10.1002/(SICI)1096-9861(19990823)411:2≤274::AID-CNE8≥3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  • Hernadi L, Elekes K, S-Rozsa K (1989) Distribution of serotonin-containing neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 257:313–323. doi:10.1007/BF00261835

    Article  Google Scholar 

  • Hernadi L, Juhos S, Elekes K (1993) Distribution of tyrosine-hydroxylase-immunoreactive and dopamine-immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 274:503–513. doi:10.1007/BF00314547

    Article  Google Scholar 

  • Hochberg R (2007) Serotonin-like immunoreactivity in the central and peripheral nervous systems of the interstitial acochlidean Asperspina sp. Biol Bull 213:43–54

    Article  PubMed  Google Scholar 

  • Huber G (1993) On the cerebral nervous system of marine Heterobranchia (Gastropoda). J Molluscan Stud 59:381–420. doi:10.1093/mollus/59.4.381

    Article  Google Scholar 

  • Jacklet JW (1980) Light sensitivity of the rhinophores and eyes of Aplysia. J Comp Physiol 136(3):257–262. doi:10.1007/BF00657541

    Article  Google Scholar 

  • Jahan-Parwar B (1972) Behavioral and electrophysiological studies on chemoreception in Aplysia. Am Zool 12:525–537

    CAS  Google Scholar 

  • Kemenes G, Elekes K, Hiripi L, Benjamin PR (1989) A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. J Neurocytol 18(2):193–208. doi:10.1007/BF01206662

    Article  PubMed  CAS  Google Scholar 

  • Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond—new insights into the evolution of the euthyneuran Gastropoda (Mollusca). BMC Evol Biol 8:57. doi:10.1186/1471–2148-8-57

    Article  PubMed  CAS  Google Scholar 

  • Longley RD, Longley AJ (1986) Serotonin immunoreactivity of neurons in the gastropod Aplysia californica. J Neurobiol 17(4):339–358. doi:10.1002/neu.480170408

    Article  PubMed  CAS  Google Scholar 

  • Merton H (1920) Untersuchungen über die Hautsinnesorgane der Mollusken. I. Opisthobranchia. Abhandl Senckenb Naturf Ges 36(4):449–473

    Google Scholar 

  • Moroz LL (2006) Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous sytem of Aplysia californica. J Comp Neurol 495:10–20. doi:10.1002/cne.20842

    Article  PubMed  CAS  Google Scholar 

  • Moroz LL, Sudlow LC, Jing J, Gillette R (1997) Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 382:176–188. doi: 10.1002/(SICI)1096-9861(19970602)382:2≤176::AID-CNE3≥3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous system of nudibranch molluscs. J Comp Neurol 499:485–505. doi:10.1002/cne.21111

    Article  PubMed  Google Scholar 

  • Ono JK, McCaman RE (1984) Immunocytochemical localization and direct assays of serotonin-containing neurons in Aplysia. Neuroscience 11(3):549–560. doi:10.1016/0306-4522(84)90044-7

    Article  PubMed  CAS  Google Scholar 

  • Ponder WF, Lindberg D (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc 119:83–265

    Article  Google Scholar 

  • Price DA, Greenberg MJ (1977) Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc. Prep Biochem 7:261–281. doi:10.1080/00327487708061643

    Article  PubMed  CAS  Google Scholar 

  • Price DA, Davies NW, Doble KE, Greenberg MJ (1987) The variety and distribution of the FMRFamide-related peptides in molluscs. Zoolog Sci 4:395–410

    CAS  Google Scholar 

  • Salimova NB, Sakharov DA, Milosevic I, Rakic L (1987) Catecholamine-containing neurons in the peripheral nervous system of Aplysia. Acta Biol Hung 38(2):203–212

    PubMed  CAS  Google Scholar 

  • Salvini-Plawen L, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, The Malacological Society of London, pp 29–51

  • Shirahata T, Watanabe S, Kirino Y (2004) Distribution of serotonin-like immunoreactive neurons in the slug Limax valentianus. Cell Tissue Res 315:285–290. doi:10.1007/s00441-003-0820-3

    Article  PubMed  Google Scholar 

  • S.-Rozsa K (1984) The pharmacology of molluscan neurons. Prog Neurobiol 23:79–150. doi:10.1016/0301-0082(84)90013-3

    Article  Google Scholar 

  • Storch V, Welsch U (1969) Über den Bau und Funktion der Nudibranchier-Rhinophoren. Z Zellforsch 97:528–536. doi:10.1007/BF00332801

    Article  PubMed  CAS  Google Scholar 

  • Sudlow LC, Jing J, Moroz LL, Gillette R (1998) Serotonin-immunoreactivity in the central nervous system of the marine molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 395:466–480. doi: 10.1002/(SICI)1096-9861(19980615)395:4≤466::AID-CNE4≥3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kimura T, Sekiguchi T, Mizukami A (1997) FMRFamide-like-immunoreactive primary sensory neurons in the olfactory system of the terrestrial mollusc, Limax marginatus. Cell Tissue Res 289:339–345. doi:10.1007/s004410050881

    Article  PubMed  CAS  Google Scholar 

  • Vonnemann V, Schrödl M, Klussmann-Kolb A, Wägele H (2005) Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18S and 28S rRNA gene sequences. J Molluscan Stud 71:113–125. doi:10.1093/mollus/eyi014

    Article  Google Scholar 

  • Wertz A, Rössler W, Obermayer M, Bickmeyer U (2006) Functional neuroanatomy of the rhinophore of Aplysia punctata. Front Zool 3:6. doi:10.1186/1742-9994-3-6

    Article  PubMed  CAS  Google Scholar 

  • Wertz A, Rössler W, Obermayer M, Bickmeyer U (2007) Functional neuroanatomy of the rhinophore of Archidoris pseudoargus. Helgol Mar Res 61:135–142. doi:10.1007/s10152-007-0061-z

    Article  Google Scholar 

  • Wollesen T, Wanninger A, Klussmann-Kolb A (2007) Neurogenesis of cephalic sensory organs of Aplysia californica. Cell Tissue Res 330:361–379. doi:10.1007/s00441-007-0460-0

    Article  PubMed  Google Scholar 

  • Wolter H (1967) Beiträge zur Biologie, Histologie und Sinnesphysiologie (insbesondere der Chemorezeption) einiger Nudibranchier (Mollusca, Opisthobranchia) der Nordsee. Z Morphol Oekol Tiere 60:275–337. doi:10.1007/BF00424637

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Roger P. Croll for his helpful comments on an earlier version of this report. We would also like to thank the German Science Foundation (DFG) for supporting this project (KL 1303/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Faller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faller, S., Staubach, S. & Klussmann-Kolb, A. Comparative immunohistochemistry of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda). Zoomorphology 127, 227–239 (2008). https://doi.org/10.1007/s00435-008-0066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-008-0066-4

Keywords

Navigation