Skip to main content

Advertisement

Log in

Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers?

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

An Author Correction to this article was published on 02 May 2018

This article has been updated

Abstract

Introduction

Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype.

Findings

Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy).

Conclusions

In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 02 May 2018

    The affiliation detail for the corresponding author, Edoardo Errichiello, was published incorrectly. The correct detail read as follows:

References

  • Abu-Amero KK, Alzahrani AS, Zou M, Shi Y (2005) High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene 24(8):1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Akbari M, Sykora P, Bohr VA (2015) Slow mitochondrial repair of 5′-AMP renders mtDNA susceptible to damage in APTX deficient cells. Sci Rep 5:12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Bharti SK, Sommers JA, Zhou J, Kaplan DL, Spelbrink JN, Mergny JL, Brosh RM Jr (2014) DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J Biol Chem 289(43):29975–29993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, Wang X, Han Y, Guo X (2013) Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer 13:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dames S, Chou LS, Xiao Y, Wayman T, Stocks J, Singleton M, Eilbeck K, Mao R (2013) The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J Mol Diagn 15(4):526–534

    Article  CAS  PubMed  Google Scholar 

  • de Araujo LF, Fonseca AS, Muys BR, Plaça JR, Bueno RB, Lorenzi JC, Santos AR, Molfetta GA, Zanette DL, Souza JE, Valente V, Silva WA Jr (2015) Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumour Biol 36(11):8869–8879

    Article  PubMed  CAS  Google Scholar 

  • Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh KK (2002) Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Desler C, Munch-Petersen B, Stevnsner T, Matsui S, Kulawiec M, Singh KK, Rasmussen LJ (2007) Mitochondria as determinant of nucleotide pools and chromosomal stability. Mutat Res 625(1–2):112–124

    Article  CAS  PubMed  Google Scholar 

  • Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL (2000) Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 275(48):37518–37523

    Article  CAS  PubMed  Google Scholar 

  • Donthamsetty S, Brahmbhatt M, Pannu V, Rida PC, Ramarathinam S, Ogden A, Cheng A, Singh KK, Aneja R (2014) Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis. Cell Cycle 13(13):2056–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druzhyna NM, Musiyenko SI, Wilson GL, LeDoux SP (2005) Cytokines induce nitric oxide-mediated mtDNA damage and apoptosis in oligodendrocytes. Protective role of targeting 8-oxoguanine glycosylase to mitochondria. J Biol Chem 280(22):21673–21679

    Article  CAS  PubMed  Google Scholar 

  • Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, Winship I, Clifton-Bligh RJ (2013) Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 98(6):E1103–E1108

    Article  CAS  PubMed  Google Scholar 

  • Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, von Ruecker A, Bastian PJ, Walgenbach-Brunagel G (2012) Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol 30(4):509–515

    Article  CAS  PubMed  Google Scholar 

  • Errichiello E, Balsamo A, Cerni M, Venesio T (2015) Mitochondrial variants in MT-CO2 and D-loop instability are involved in MUTYH-associated polyposis. J Mol Med (Berl) 93(11):1271–1281

    Article  CAS  Google Scholar 

  • Fakih MG (2015) Metastatic colorectal cancer: current state and future directions. J Clin Oncol 33(16):1809–1824

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Xiong L, Ji Z, Cheng W, Yang H (2011) Correlation between increased copy number of mitochondrial DNA and clinicopathological stage in colorectal cancer. Oncol Lett 2(5):899–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45(6):731–742

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wen S, Zhou H, Feng S (2015) De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 12(5):7033–7038

    Article  CAS  PubMed  Google Scholar 

  • Gasparre G, Porcelli AM, Lenaz G, Romeo G (2013) Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol 5(2):a011411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gebb SA, Decoux A, Waggoner A, Wilson GL, Gillespie MN (2013) Mitochondrial DNA damage mediates hyperoxic dysmorphogenesis in rat fetal lung explants. Neonatology 103(2):91–97

    Article  CAS  PubMed  Google Scholar 

  • Geurts-Giele WR, Gathier GH, Atmodimedjo PN, Dubbink HJ, Dinjens WN (2015) Mitochondrial D310 mutation as clonal marker for solid tumors. Virchows Arch 467(5):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Dickins B, Afgan E, Paul IM, Taylor J, Makova KD, Nekrutenko A (2011) Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol 12(6):R59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziewicz MA, Day BJ, Copeland WC (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 30(13):2817–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda M, Sasieni P, Novelli MR, Jankowski JA, Turnbull DM, Wright NA, McDonald SA (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 103(3):714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra F, Perrone AM, Kurelac I, Santini D, Ceccarelli C, Cricca M, Zamagni C, De Iaco P, Gasparre G (2012) Mitochondrial DNA mutation in serous ovarian cancer: implications for mitochondria-coded genes in chemoresistance. J Clin Oncol 30(36):e373–e378

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Zheng B, Cai Z, Xu L, Guo D, Cao L, Wang Y (2013) The polymorphic AluYb8 insertion in the MUTYH gene is associated with reduced type 1 protein expression and reduced mitochondrial DNA content. PLoS One 8(8):e70718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 52(5):534–542

    Article  CAS  PubMed  Google Scholar 

  • Habano W, Nakamura S, Sugai T (1998) Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: evidence for mismatch repair systems in mitochondrial genome. Oncogene 17(15):1931–1937

    Article  CAS  PubMed  Google Scholar 

  • Hanes JW, Thal DM, Johnson KA (2006) Incorporation and replication of 8-oxo-deoxyguanosine by the human mitochondrial DNA polymerase. J Biol Chem 281(47):36241–36248

    Article  CAS  PubMed  Google Scholar 

  • Hashizume M, Mouner M, Chouteau JM, Gorodnya OM, Ruchko MV, Potter BJ, Wilson GL, Gillespie MN, Parker JC (2013) Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 304(4):L287–L297

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464(7288):610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofhaus G, Attardi G (1995) Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase. Mol Cell Biol 15(2):964–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann JN, Hosgood HD 3rd, Liu CS, Chow WH, Shuch B, Cheng WL, Lin TT, Moore LE, Lan Q, Rothman N, Purdue MP (2014) A nested case-control study of leukocyte mitochondrial DNA copy number and renal cell carcinoma in the prostate, lung, colorectal and ovarian cancer screening trial. Carcinogenesis 35(5):1028–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horan MP, Cooper DN (2014) The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum Genet 133(4):435–458

    Article  CAS  PubMed  Google Scholar 

  • Huang WS, Kuo YH, Chin CC, Wang JY, Yu HR, Sheen JM, Tung SY, Shen CH, Chen TC, Sung ML, Liang HF, Kuo HC (2012) Proteomic analysis of the effects of baicalein on colorectal cancer cells. Proteomics 12(6):810–819

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Gao YT, Shu XO, Wen W, Yang G, Li G, Courtney R, Ji BT, Li HL, Purdue MP, Zheng W, Cai Q (2014a) Association of leukocyte mitochondrial DNA copy number with colorectal cancer risk: results from the Shanghai Women’s Health Study. Cancer Epidemiol Biomark Prev 23(11):2357–2365

    Article  CAS  Google Scholar 

  • Huang CY, Chen YM, Wu CH, Tsai CM, Lee YC, Perng RP, Whang-Peng J (2014b) Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung. Oncol Lett 7(6):2180–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, Gaal J et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108(1):314–318

    Article  CAS  PubMed  Google Scholar 

  • Ju YS, Tubio JM, Mifsud W, Fu B, Davies HR, Ramakrishna M et al (2015) Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 25(6):814–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P, Creighton CJ, Chan WY, Wong LJ (2013) Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One 8(5):e61747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 33(2):403–412

    Article  CAS  PubMed  Google Scholar 

  • Kassem AM, El-Guendy N, Tantawy M, Abdelhady H, El-Ghor A, Abdel Wahab AH (2011) Mutational hotspots in the mitochondrial D-loop region of cancerous and precancerous colorectal lesions in Egyptian patients. DNA Cell Biol 30(11):899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloss-Brandstätter A, Weissensteiner H, Erhart G, Schäfer G, Forer L, Schönherr S et al (2015) Validation of next-generation sequencing of entire mitochondrial genomes and the diversity of mitochondrial dna mutations in oral squamous cell carcinoma. PLoS One 10(8):e0135643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koehler BC, Jäger D, Schulze-Bergkamen H (2014) Targeting cell death signaling in colorectal cancer: current strategies and future perspectives. World J Gastroenterol 20(8):1923–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larman TC, DePalma SR, Hadjipanayis AG, Cancer Genome Atlas Research Network, Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG (2012) Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci USA 109(35):14087–14091

    Article  PubMed  Google Scholar 

  • LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL (2007) Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145(4):1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hwang I, Kang YN, Choi IJ, Kim DK (2015) Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis. PLoS One 10(3):e0118612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehtonen R, Kiuru M, Vanharanta S, Sjöberg J, Aaltonen LM, Aittomäki K et al (2004) Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol 164(1):17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WL, Xiao MS, Zhang DF, Yu D, Yang RX, Li XY, Yao YG (2014) Mutation and expression analysis of the IDH1, IDH2, DNMT3A, and MYD88 genes in colorectal cancer. Gene 546(2):263–270

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Wu L, Kiew LV, Chung LY, Burgess K, Lee HB (2014) Rosamines targeting the cancer oxidative phosphorylation pathway. PLoS ONE 9(3):e82934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linkowska K, Jawień A, Marszałek A, Malyarchuk BA, Tońska K, Bartnik E, Skonieczna K, Grzybowski T (2015) Mitochondrial DNA polymerase γ mutations and their implications in mtDNA alterations in colorectal cancer. Ann Hum Genet. doi:10.1111/ahg.12111

    Article  PubMed  Google Scholar 

  • Liu Y, Li Y, Wang H, Yu J, Lin H, Xu D et al (2009) BH3-based fusion artificial peptide induces apoptosis and targets human colon cancer. Mol Ther 17(9):1509–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Busch J, Jung M, Rabenhorst S, Ralla B, Kilic E, Mergemeier S, Budach N, Fendler A, Jung K (2016) Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clin Chim Acta 452:109–119

    Article  CAS  PubMed  Google Scholar 

  • Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S (2013) A novel osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis 4:e653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30(4):394–399

    Article  CAS  PubMed  Google Scholar 

  • Máximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simões M (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. Am J Pathol 160(5):1857–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA (2013) Impact of deleterious passenger mutations on cancer progression. Proc Natl Acad Sci USA 110(8):2910–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrabi S, Akwe JA, Adams G Jr, Grizzle W, Yao X, Aikhionbare FO (2010) Analysis of mtDNA sequence variants in colorectal adenomatous polyps. Diagn Pathol 5:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minocherhomji S, Tollefsbol TO, Singh KK (2012) Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7(4):326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahashi M, Wakai T, Shimada Y, Ichikawa H, Kameyama H, Kobayashi T et al (2016) Genomic landscape of colorectal cancer in Japan: clinical implications of comprehensive genomic sequencing for precision medicine. Genome Med 8(1):136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y (2009) A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18(9):1578–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28(22):3636–3643

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Soares P, Radivojac P, Li B, Samuels DC (2011) Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 88(4):433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20(3):291–293

    Article  CAS  PubMed  Google Scholar 

  • Qu F, Chen Y, Wang X, He X, Ren T, Huang Q, Zhang J, Liu X, Guo X, Gu J, Xing J (2015) Leukocyte mitochondrial DNA content: a novel biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Carcinogenesis 36(5):543–552

    Article  CAS  PubMed  Google Scholar 

  • Rachek LI, Grishko VI, Alexeyev MF, Pastukh VV, LeDoux SP, Wilson GL (2004) Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Res 32(10):3240–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachek LI, Thornley NP, Grishko VI, LeDoux SP, Wilson GL (2006) Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. Diabetes 55(4):1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Santos C, Mateiu L, Gonzalez Mdel M, Alvarez L, Azevedo L, Amorim A, Aluja MP (2013) Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One 8(10):e74636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F, Maher ER (2008) Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100(17):1260–1262

    Article  CAS  PubMed  Google Scholar 

  • Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 23(6):759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio CA (2016) Traditional serrated adenomas of the upper digestive tract. J Clin Pathol 69(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Salas A, García-Magariños M, Logan I, Bandelt HJ (2014) The saga of the many studies wrongly associating mitochondrial DNA with breast cancer. BMC Cancer 14:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders W (2005) Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol 15(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Schwartz S Jr, Alazzouzi H, Perucho M (2006) Mutational dynamics in human tumors confirm the neutral intrinsic instability of the mitochondrial D-loop poly-cytidine repeat. Genes Chromosomes Cancer 45(8):770–780

    Article  CAS  PubMed  Google Scholar 

  • Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y (2011) Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 20(23):4605–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg RG, Koutcher JA, Ackerstaff E (2015) Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia 17(8):671–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh KK, Kulawiec M, Still I, Desouki MM, Geradts J, Matsui S (2005) Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene 354:140–146

    Article  CAS  PubMed  Google Scholar 

  • Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK (2008) A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 7(8):1182–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondheimer N, Glatz CE, Tirone JE, Deardorff MA, Krieger AM, Hakonarson H (2011) Neutral mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet 20(8):1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa MX, Sivakumar IK, Maragh S, Veeramachaneni V, Hariharan R, Parulekar M et al (2012) Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. PLoS Comput Biol 8(10):e1002737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493(7434):627–631

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9(6 Pt 1):534–541

    CAS  PubMed  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thyagarajan B, Wang R, Barcelo H, Koh WP, Yuan JM (2012) Mitochondrial copy number is associated with colorectal cancer risk. Cancer Epidemiol Biomark Prev 21(9):1574–1581

    Article  CAS  Google Scholar 

  • Thyagarajan B, Guan W, Fedirko V, Barcelo H, Tu H, Gross M, Goodman M, Bostick RM (2016) No association between mitochondrial DNA copy number and colorectal adenomas. Mol Carcinog 55(8):1290–1296

    Article  CAS  PubMed  Google Scholar 

  • Tipirisetti NR, Govatati S, Pullari P, Malempati S, Thupurani MK, Perugu S, Guruvaiah P, Rao KL, Digumarti RR, Nallanchakravarthula V, Bhanoori M, Satti V (2014) Mitochondrial control region alterations and breast cancer risk: a study in South Indian population. PLoS One 9(1):e85363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Gisbergen MW, Voets AM, Starmans MH, de Coo IF, Yadak R, Hoffmann RF, Boutros PC, Smeets HJ, Dubois L, Lambin P (2015) How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res 764:16–30

    Article  PubMed  CAS  Google Scholar 

  • van Osch FH, Voets AM, Schouten LJ, Gottschalk RW, Simons CC, van Engeland M, Lentjes MH, van den Brandt PA, Smeets HJ, Weijenberg MP (2015) Mitochondrial DNA copy number in colorectal cancer: between tissue comparisons, clinicopathological characteristics and survival. Carcinogenesis 36(12):1502–1510

    PubMed  Google Scholar 

  • Venderbosch S, van Vliet S, Craenmehr MH, Simmer F, de Haan AF, Punt CJ, Koopman M, Nagtegaal ID (2015) Mitochondrial microsatellite instability in patients with metastatic colorectal cancer. Virchows Arch 466(5):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venesio T, Balsamo A, Errichiello E, Ranzani GN, Risio M (2013) Oxidative DNA damage drives carcinogenesis in MUTYH-associated-polyposis by specific mutations of mitochondrial and MAPK genes. Mod Pathol 26(10):1371–1381

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5(11):a021220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhao S, Du Y, Guo Z (2016) Single nucleotide polymorphisms in the D-loop region of mitochondrial DNA is associated with colorectal cancer outcome. Mitochondrial DNA A DNA Mapp Seq Anal 27(6):4361–4363

    CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Webb E, Broderick P, Chandler I, Lubbe S, Penegar S, Tomlinson IP, Houlston RS (2008) Comprehensive analysis of common mitochondrial DNA variants and colorectal cancer risk. Br J Cancer 99(12):2088–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramasekera NT, Das GM (2014) Tumor suppressor p53 and estrogen receptors in nuclear-mitochondrial communication. Mitochondrion 16:26–37

    Article  CAS  PubMed  Google Scholar 

  • Wilson TR, McEwan M, McLaughlin K, Le Clorennec C, Allen WL, Fennell DA, Johnston PG, Longley DB (2009) Combined inhibition of FLIP and XIAP induces Bax-independent apoptosis in type II colorectal cancer cells. Oncogene 28(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Wong LJ (2013) Next generation molecular diagnosis of mitochondrial disorders. Mitochondrion 13(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Woo DK, Green PD, Santos JH, D’Souza AD, Walther Z, Martin WD, Christian BE, Chandel NS, Shadel GS (2012) Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 180(1):24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94(2):514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J, Prokopova K, Dong L, Neuzil J (2015) Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 15:401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan B, Dong L, Neuzil J (2016) Mitochondria: an intriguing target for killing tumour-initiating cells. Mitochondrion 26:86–93

    Article  CAS  PubMed  Google Scholar 

  • Yang XM, Cui L, White J, Kuck J, Ruchko MV, Wilson GL, Alexeyev M, Gillespie MN, Downey JM, Cohen MV (2015) Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 110(2):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye K, Lu J, Ma F, Keinan A, Gu Z (2014) Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci USA 111(29):10654–10659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M (2012) Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA 23(5):329–332

    Article  CAS  PubMed  Google Scholar 

  • Yuzefovych LV, Kahn AG, Schuler MA, Eide L, Arora R, Wilson GL, Tan M, Rachek LI (2016) Mitochondrial DNA Repair through OGG1 Activity Attenuates Breast Cancer Progression and Metastasis. Cancer Res 76(1):30–34

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by AIRC—Associazione Italiana per la Ricerca sul Cancro (Grant Number #5982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Errichiello.

Ethics declarations

Conflict of interest

EE declares that he has no conflict of interest. TV declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errichiello, E., Venesio, T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers?. J Cancer Res Clin Oncol 143, 1905–1914 (2017). https://doi.org/10.1007/s00432-017-2418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-017-2418-2

Keywords

Navigation