Skip to main content

Advertisement

Log in

Mitochondrial genome instability in colorectal adenoma and adenocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. INCA. Estimativa 2014—Incidência de Câncer no Brasil. Rio de Janeiro, RJ. 2014. Accessed 04/28/15.

  3. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B. Colorectal cancer. Lancet. 2010;375(9719):1030–47. doi:10.1016/S0140-6736(10)60353-4.

    Article  PubMed  Google Scholar 

  4. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788–93. doi:10.1073/pnas.1003428107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol. 2005;25(15):6391–403. doi:10.1128/MCB.25.15.6391-6403.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014;2:10. doi:10.1186/2049-3002-2-10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  9. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34. doi:10.1016/j.ccr.2006.04.023.

    Article  CAS  PubMed  Google Scholar 

  10. Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94. doi:10.1016/j.cmet.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  11. Wallace DC. Structure and evolution of organelle genomes. Microbiol Rev. 1982;46(2):208–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.

    Article  CAS  PubMed  Google Scholar 

  13. Singh RK, Srivastava A, Kalaiarasan P, Manvati S, Chopra R, Bamezai RN. mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features. Sci Rep. 2014;4:6571. doi:10.1038/srep06571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa K, Hayashi J. A novel function of mtDNA: its involvement in metastasis. Ann N Y Acad Sci. 2010;1201:40–3. doi:10.1111/j.1749-6632.2010.05616.x.

    Article  CAS  PubMed  Google Scholar 

  15. Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P, et al. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One. 2013;8(5):e61747. doi:10.1371/journal.pone.0061747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. 2010;464(7288):610–4. doi:10.1038/nature08802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A. 2012;109(35):14087–91. doi:10.1073/pnas.1211502109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JH, Hwang I, Kang YN, Choi IJ, Kim DK. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis. PLoS One. 2015;10(3):e0118612. doi:10.1371/journal.pone.0118612.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lim SW, Kim HR, Kim HY, Huh JW, Kim YJ, Shin JH, et al. High-frequency minisatellite instability of the mitochondrial genome in colorectal cancer tissue associated with clinicopathological values. Int J Cancer. 2012;131(6):1332–41. doi:10.1002/ijc.27375.

    Article  CAS  PubMed  Google Scholar 

  20. Ye K, Lu J, Ma F, Keinan A, Gu Z. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci U S A. 2014;111(29):10654–9. doi:10.1073/pnas.1403521111.

  21. Taylor RW, Taylor GA, Durham SE, Turnbull DM. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations. Nucl Acids Res. 2001;29(15):E74–4.

  22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. doi:10.1038/nmeth0410-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009;25(21):2744–50. doi:10.1093/bioinformatics/btp528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Untergasser A, Cutcutache I, Koressaar T, Ye J, Remme M. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi:10.1093/nar/gks596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91. doi:10.1093/bioinformatics/btm091.

    Article  CAS  PubMed  Google Scholar 

  26. Venegas V, Wang J, Dimmock D, Wong LJ. Real-time quantitative PCR analysis of mitochondrial DNA content. Current protocols in human genetics / editorial board, Jonathan L Haines [et al]. 2011;Chapter 19:Unit 19 7. doi:10.1002/0471142905.hg1907s68.

  27. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi:10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. doi:10.1093/bioinformatics/btp352.

    Article  PubMed  PubMed Central  Google Scholar 

  29. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. doi:10.1038/ng.806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gasparre G, Porcelli AM, Lenaz G, Romeo G. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol. 2013;5(2). doi:10.1101/cshperspect.a011411.

  31. Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, et al. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet. 2014;23(6):1453–66. doi:10.1093/hmg/ddt533.

    Article  CAS  PubMed  Google Scholar 

  32. Tan AS, Baty JW, Berridge MV. The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochim Biophys Acta. 2014;1840(4):1454–63. doi:10.1016/j.bbagen.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  33. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20(3):291–3. doi:10.1038/3108.

    Article  CAS  PubMed  Google Scholar 

  34. Blok MJ, Spruijt L, de Coo IF, Schoonderwoerd K, Hendrickx A, Smeets HJ. Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of oxidative phosphorylation disease. J Med Genet. 2007;44(4):e74. doi:10.1136/jmg.2006.045716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naini AB, Lu J, Kaufmann P, Bernstein RA, Mancuso M, Bonilla E, et al. Novel mitochondrial DNA ND5 mutation in a patient with clinical features of MELAS and MERRF. Arch Neurol. 2005;62(3):473–6. doi:10.1001/archneur.62.3.473.

    Article  PubMed  Google Scholar 

  36. Danovi D, Cremona CA, Machado-da-Silva G, Basu S, Noon LA, Parrinello S, et al. A genetic screen for anchorage-independent proliferation in mammalian cells identifies a membrane-bound neuregulin. PLoS One. 2010;5(7):e11774. doi:10.1371/journal.pone.0011774.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou S, Kachhap S, Sun W, Wu G, Chuang A, Poeta L, et al. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci U S A. 2007;104(18):7540–5. doi:10.1073/pnas.0610818104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang C, Huang VH, Simon M, Sharma LK, Fan W, Haas R, et al. Heteroplasmic mutations of the mitochondrial genome cause paradoxical effects on mitochondrial functions. FASEB J. 2012;26(12):4914–24. doi:10.1096/fj.12-206532.

    Article  CAS  PubMed  Google Scholar 

  39. Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, et al. The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum Mol Genet. 2010;19(6):1019–32. doi:10.1093/hmg/ddp566.

    Article  CAS  PubMed  Google Scholar 

  40. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem. 2009;284(48):33185–94. doi:10.1074/jbc.M109.054221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kurelac I, MacKay A, Lambros MB, Di Cesare E, Cenacchi G, Ceccarelli C. Somatic complex I disruptive mitochondrial DNA mutations are modifiers of tumorigenesis that correlate with low genomic instability in pituitary adenomas. Hum Mol Genet. 2013;22(2):226–38. doi:10.1093/hmg/dds422.

    Article  CAS  PubMed  Google Scholar 

  42. Levinger L, Morl M, Florentz C. Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res. 2004;32(18):5430–41. doi:10.1093/nar/gkh884.

  43. Coenen MJ, Antonicka H, Ugalde C, Sasarman F, Rossi R, Heister JG, et al. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med. 2004;351(20):2080–6. doi:10.1056/NEJMoa041878.

    Article  CAS  PubMed  Google Scholar 

  44. Smeitink JA, Elpeleg O, Zntonicka H, Diepstra H, Saada A, Smits P, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet. 2006;79(5):869–77. doi:10.1086/508434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Desai SP, Bhatia SN, Toner M, Irimia D. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J. 2013;104(9):2077–88. doi:10.1016/j.bpj.2013.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32(40):4814–24. doi:10.1038/onc.2012.494.

    Article  CAS  PubMed  Google Scholar 

  47. Yu M, Shi Y, Wei X, Yang Y, Zang F, Niu R. Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells. Eur J Cancer Prev. 2009;18(6):445–57. doi:10.1097/CEJ.0b013e32832f9bd6.

    Article  CAS  PubMed  Google Scholar 

  48. Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion. 2013;13(6):577–91. doi:10.1016/j.mito.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  49. Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci. 2011;89(3-4):65–71. doi:10.1016/j.lfs.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  50. Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, et al. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer. 2013;13:110. doi:10.1186/1471-2407-13-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirches E. Mitochondrial and nuclear genes of mitochondrial components in cancer. Curr Genom. 2009;10(4):281–93. doi:10.2174/138920209788488517.

    Article  CAS  Google Scholar 

  52. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011;21(1):12–20. doi:10.1101/gr.108696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. doi:10.1101/gr.092759.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Adriana Aparecida Marques and Life Technologies (Brazil) for the technical support. We also thank Vinicius Kannen Cardoso for the scientific insights.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This work was funding by The National Council for Scientific and Technological Development (CNPq), grant #573754/2008-0; by grants #2008/57877-3 and #2013/08135-2, São Paulo Research Foundation (FAPESP); and by Research Support of the University Sao Paulo, CISBi-NAP/USP #12.1.25441.01.2.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson A. Silva Jr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, L.F., Fonseca, A.S., Muys, B.R. et al. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumor Biol. 36, 8869–8879 (2015). https://doi.org/10.1007/s13277-015-3640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3640-7

Keywords

Navigation