Skip to main content

Advertisement

Log in

Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3

  • Research Article
  • Published:
Tumor Biology

Abstract

Runt domain transcription factor 3 (RUNX3) is a tumor suppressor that is silenced in cancer via hypermethylation of its promoter. This study investigated the mechanisms involved in reactive oxygen species (ROS)-induced silencing of RUNX3 in terms of epigenetic alteration since the effects of oxidative stress in tumor suppressor gene transcription are largely unknown. RUNX3 mRNA and protein expressions were down-regulated in response to hydrogen peroxide (H2O2) in the human colorectal cancer cell line SNU-407. This down-regulation was abolished with pretreatment of the ROS scavenger, N-acetylcysteine (NAC). Moreover, methylation-specific PCR data revealed that H2O2 treatment increased RUNX3 promoter methylation; however, NAC and the cytosine methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-dC), decreased it, suggesting that an epigenetic regulatory mechanism by ROS-induced methylation may be involved in RUNX3 silencing. H2O2 treatment resulted in DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) up-regulation with increased expression and activity, increased binding of DNMT1 to HADC1, and increased DNMT1 binding to the RUNX3 promoter. In addition, 5-Aza-dC treatment prevented the decrease in RUNX3 mRNA and protein levels by H2O2 treatment. Additionally, H2O2 treatment inhibited the nuclear localization and expression of RUNX3, which was abolished by NAC treatment. Furthermore, the down-regulation of RUNX3 expression by H2O2 also influenced cell proliferation. Taken together, the data suggested that ROS silenced the tumor suppressor, RUNX3, by epigenetic regulation and may therefore be associated with the progression of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.

    Article  PubMed  CAS  Google Scholar 

  2. Filomeno G, Rotilio G, Ciriolo MR. Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ. 2005;12:1555–63.

    Article  Google Scholar 

  3. Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 2003;22:6335–45.

    Article  PubMed  CAS  Google Scholar 

  4. Cedar H. DNA methylation and gene activity. Cell. 1988;53:3–4.

    Article  PubMed  CAS  Google Scholar 

  5. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed  CAS  Google Scholar 

  6. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–40.

    Article  PubMed  CAS  Google Scholar 

  7. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  PubMed  CAS  Google Scholar 

  8. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  PubMed  CAS  Google Scholar 

  9. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  PubMed  CAS  Google Scholar 

  10. Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135:2128–40.

    Article  PubMed  CAS  Google Scholar 

  11. Bae SC, Choi JK. Tumor suppressor activity of RUNX3. Oncogene. 2004;23:4336–40.

    Article  PubMed  CAS  Google Scholar 

  12. Hiramatsu T, Osaki M, Ito Y, Tanji Y, Tokuyasu N, Ito H. Expression of RUNX3 protein in human esophageal mucosa and squamous cell carcinoma. Pathobiology. 2005;72:316–24.

    Article  PubMed  CAS  Google Scholar 

  13. Oshimo Y, Oue N, Mitani Y, Nakayama H, Kitadai Y, Yoshida K, et al. Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology. 2004;71:137–43.

    Article  PubMed  CAS  Google Scholar 

  14. Subramaniam MM, Chan JY, Yeoh GK, Quek T, Ito K, Salto-Tellez M. Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta. 2009;1796:315–31.

    PubMed  CAS  Google Scholar 

  15. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002;109:113–24.

    Article  PubMed  CAS  Google Scholar 

  16. Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci. 2002;5:946–54.

    Article  PubMed  CAS  Google Scholar 

  17. Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 2002;21:3454–63.

    Article  PubMed  CAS  Google Scholar 

  18. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 2002;111:621–33.

    Article  PubMed  CAS  Google Scholar 

  19. Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW, Bang YJ, et al. Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest. 2004;84:479–84.

    Article  PubMed  CAS  Google Scholar 

  20. Nakase Y, Sakakura C, Miyagawa K, Kin S, Fukuda K, Yanagisawa A, et al. Frequent loss of RUNX3 gene expression in remnant stomach cancer and adjacent mucosa with special reference to topography. Br J Cancer. 2005;92:562–9.

    PubMed  CAS  Google Scholar 

  21. Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 2005;65:7743–50.

    Article  PubMed  CAS  Google Scholar 

  22. Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, et al. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 2006;66:6512–20.

    Article  PubMed  CAS  Google Scholar 

  23. Subramaniam MM, Chan JY, Soong R, Ito K, Ito Y, Yeoh KG, et al. RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression. Breast Cancer Res Treat. 2009;113:113–21.

    Article  PubMed  CAS  Google Scholar 

  24. Subramaniam MM, Chan JY, Soong R, Ito K, Yeoh KG, Wong R, et al. RUNX3 inactivation in colorectal polyps arising through different pathways of colonic carcinogenesis. Am J Gastroenterol. 2009;104:426–36.

    Article  PubMed  CAS  Google Scholar 

  25. Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, et al. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell. 2008;14:226–37.

    Article  PubMed  CAS  Google Scholar 

  26. Blau S, Rubistein A, Bass P, Singaram C, Kohen R. Differences in the reducing power along the rat GI tract: lower antioxidant capacity of the colon. Mol Cell Biochem. 1999;194:185–91.

    Article  PubMed  CAS  Google Scholar 

  27. Hendricks CW, Kelly RW, Radley S, Donovan IA, Keighley MR, Neoptolemis JP. Lipid peroxidation and prostaglandins in colorectal cancer. British J of Surg. 1994;81:1219–23.

    Article  Google Scholar 

  28. Van Driel BE, Lyon H, Hoogenraad DC, Anten S, Hansen U, Van Noorden CJ. Expression of CuZn- and Mn-superoxide dismutase in human colorectal neoplasms. Free Radic Biol Med. 1997;23:435–44.

    Article  PubMed  Google Scholar 

  29. Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress-signaling in cancer. EMBO Reports. 2002;3:420–5.

    Article  PubMed  CAS  Google Scholar 

  30. Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda L, Sulkowska M. Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol. 2005;11:403–6.

    PubMed  CAS  Google Scholar 

  31. Chen JC, Huang KC, Lin WW. HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal. 2006;18:32–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ku JL, Kang SB, Shin YK, Kang HC, Hong SH, Kim IJ, et al. Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene. 2004;23:6736–42.

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 2009;28:184–94.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003;23:206–15.

    Article  PubMed  CAS  Google Scholar 

  36. Soong R, Shah N, Peh BK, Chong PY, Ng SS, Zeps N, et al. The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Br J Cancer. 2009;100:676–9.

    Article  PubMed  CAS  Google Scholar 

  37. Kang DH. Oxidative stress, DNA damage, and breast cancer. AACN Clinical Issues. 2002;13:540–9.

    Article  PubMed  Google Scholar 

  38. Arsova-Sarafinovska Z, Eken A, Matevska N, Erdem O, Sayal A, Savaser A, et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin Biochem. 2009;42:1228–35.

    Article  PubMed  CAS  Google Scholar 

  39. Lawless MW, O'Byrne KJ, Gray SG. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med. 2009;13:2800–21.

    Article  PubMed  CAS  Google Scholar 

  40. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 2002;62:7213–8.

    PubMed  CAS  Google Scholar 

  41. Li QL, Kim HR, Kim WJ, Choi JK, Lee YH, Kim HM, et al. Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun. 2004;314:223–8.

    Article  PubMed  CAS  Google Scholar 

  42. Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 2000;95:3208–13.

    PubMed  CAS  Google Scholar 

  43. Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S. 5′-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut. 2000;47:272–6.

    Article  PubMed  CAS  Google Scholar 

  44. Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–7.

    Article  PubMed  CAS  Google Scholar 

  45. Song SH, Jong HS, Choi HH, Inoue H, Tanabe T, Kim NK, et al. Transcriptional silencing of cyclooxygenase-2 by hyper-methylation of the 5′ CpG island in human gastric carcinoma cells. Cancer Res. 2001;61:4628–35.

    PubMed  CAS  Google Scholar 

  46. Zöchbauer-Müller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, et al. 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001;61:3581–5.

    PubMed  Google Scholar 

  47. Ku JL, Yoon KA, Kim IJ, Kim WH, Jang JY, Suh KS, et al. Establishment and characterisation of six human biliary tract cancer cell lines. Br J Cancer. 2002;87:187–93.

    Article  PubMed  CAS  Google Scholar 

  48. Suh ER, Ha CS, Rankin EB, Toyota M, Traber PG. DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J Biol Chem. 2002;277:35759–800.

    Article  Google Scholar 

  49. van Engeland M, Roemen GM, Brink M, Pachen MM, Weijenberg MP, de Bruïne AP, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene. 2002;21:3792–5.

    Article  PubMed  Google Scholar 

  50. Yang Q, Nakamura M, Nakamura Y, Yoshimura G, Suzuma T, Umemura T, et al. Two-hit inactivation of FHIT by loss of heterozygosity and hypermethylation in breast cancer. Clin Cancer Res. 2002;8:2890–3.

    PubMed  CAS  Google Scholar 

  51. Di Vinci A, Infusini E, Nigro S, Monaco R, Giaretti W. Intratumor distribution of 1p deletions in human colorectal adenocarcinoma is commonly homogeneous: indirect evidence of early involvement in colorectal tumorigenesis. Cancer. 1998;83:415–22.

    Article  PubMed  Google Scholar 

  52. Di Vinci A, Infusini E, Peveri C, Sciutto A, Geido E, Risio M, et al. Correlation between 1p deletions and aneusomy in human colorectal adenomas. Int J Cancer. 1998;75:45–50.

    Article  PubMed  Google Scholar 

  53. Tanaka K, Yanoshita R, Konishi M, Oshimura M, Maeda Y, Mori T, et al. Suppression of tumourigenicity in human colon carcinoma cells by introduction of normal chromosome 1p36 region. Oncogene. 1993;8:2253–8.

    PubMed  CAS  Google Scholar 

  54. Praml C, Finke LH, Herfarth C, Schlag P, Schwab M, Amler L. Deletion mapping defines different regions in 1p34.2-pter that may harbor genetic information related to human colorectal cancer. Oncogene. 1995;11:1357–62.

    PubMed  CAS  Google Scholar 

  55. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, Swanson PE, Birnbaum EH, Fleshman JW, et al. Prognostic value of chromosome 1p allelic loss in colon cancer. Gastroenterology. 1997;113:761–6.

    Article  PubMed  CAS  Google Scholar 

  56. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer? A mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.

    Article  PubMed  CAS  Google Scholar 

  57. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.

    Article  PubMed  CAS  Google Scholar 

  58. Bestor TH, The DNA. methyltransferases of mammals. Hum Mol Genet. 2000;92:395–402.

    Google Scholar 

  59. Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001;20:3156–65.

    Google Scholar 

  60. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24:88–91.

    Article  PubMed  CAS  Google Scholar 

  61. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15:490–538.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea (1120340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K.A., Zhang, R., Kim, G.Y. et al. Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumor Biol. 33, 403–412 (2012). https://doi.org/10.1007/s13277-012-0322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0322-6

Keywords

Navigation