Skip to main content

Advertisement

Log in

The recent progress of the mechanism and regulation of tumor necrosis in colorectal cancer

  • Review – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

In colorectal cancer (CRC), despite the complex inducing and regulating mechanism in necrosis progress, the prognostic value of tumor necrosis has been reported. It is generally recognized that necrosis is associated with many process involving severe hypoxia, inflammatory responses and angiogenesis, all of which contribute to promote tumor growth and poor prognosis. In addition to local hypoxia, regulation by RIP kinase and the conversion from apoptosis to necrosis can result in necrosis also. Recent studies showed necrosis can be a histopathologic characteristic for special molecular phenotype of CRC. A novel and attractive complementary treatment, tumor necrosis therapy, using radiolabelled compounds avid for necrosis has emerged. However, the complicated regulatory mechanisms of tumor necrosis were rarely reported in CRC, and we collected and reviewed these effect and relevance in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander J, Watanabe T, Wu TT, Rashid A, Li SA, Hamilton SR (2001) Histopathological identification of colon cancer with microsatellite instability. Am J Pathol 158:527–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson U et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ausprunk DH, Folkman J (1976) Vascular injury in transplanted tissues—fine-structural changes in tumor, adult, and embryonic blood-vessels virchows arch B-cell. Mol Pathol 21:31–44

    Google Scholar 

  • Bacon AL, Fox S, Turley H, Harris AL (2007) Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene 26:132–141

    Article  PubMed  CAS  Google Scholar 

  • Baglioni S, Genuardi M (2004) Simple and complex genetics of colorectal cancer susceptibility. Am J Med Genet C 129C:35–43

    Article  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertout JA, Patel SA, Simon MC (2008) Hypoxia and metabolism series—timeline the impact of O-2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertout JA et al (2009) HIF2 alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci USA 106:14391–14396

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi ME, Beltrame M (2000) Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia. EMBO Rep 1:109–114. doi:10.1093/embo-reports/kvd030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bikfalvi A, Bicknell R (2002) Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci 23:576–582

    Article  PubMed  CAS  Google Scholar 

  • Bouck N, Stellmach V, Hsu SC (1996) How tumors become angiogenic. Advances in cancer research, vol 69. Elsevier Academic Press Inc, San Diego, pp 135–174

    Google Scholar 

  • Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6:157–162

    Article  PubMed  CAS  Google Scholar 

  • Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB (2006) The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer 118:1660–1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlomagno C et al (1995) Prognostic-significance of necrosis, elastosis, fibrosis and inflammatory cell reaction in operable breast-cancer. Oncology 52:272–277

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Chan FK (2012) Fueling the flames: Mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb Perspect Biol 4(11). doi:10.1101/cshperspect.a008805

  • Charames GS, Bapat B (2003) Genomic instability and cancer. Curr Mol Med 3:589–596

    Article  PubMed  CAS  Google Scholar 

  • Chia SK et al (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19:3660–3668

    PubMed  CAS  Google Scholar 

  • Chirieac LR, Shen LL, Catalano PJ, Issa JP, Hamilton SR (2005) Phenotype of microsatellite-stable colorectal carcinomas with CpG island methylation. Am J Surg Pathol 29:429–436

    Article  PubMed  Google Scholar 

  • Chung YC, Chaen YL, Hsu CP (2006) Clinical significance of tissue expression of interleukin-6 in colorectal carcinoma. Anticancer Res 26:3905–3911

    PubMed  CAS  Google Scholar 

  • Cona MM et al (2012) Continuing pursuit for ideal systemic anticancer radiotherapeutics. Invest New Drugs 30:2050–2065

    Article  PubMed  CAS  Google Scholar 

  • Cooper R et al (2003) Glucose transporter-1 (GLUT-1): a potential marker of prognosis in rectal carcinoma? Br J Cancer 89:870–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danese S, Mantovani A (2010) Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene 29:3313–3323

    Article  PubMed  CAS  Google Scholar 

  • Dannappel M et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies KJA (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47

    Article  PubMed  CAS  Google Scholar 

  • De Putte MV, Wang HJ, Chen F, De Witte PAM, Ni YC (2008) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep 19:927–932

    PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  PubMed  CAS  Google Scholar 

  • Edwards JG, Swinson DEB, Jones JL, Muller S, Waller DA, O’Byrne KJ (2003) Tumor necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest 124:1916–1923

    Article  PubMed  Google Scholar 

  • Epstein AL, Chen FM, Taylor CR (1988) A novel method for the detection of necrotic lesions in human cancers. Cancer Res 48:5842–5848

    PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H (2002) An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol 168:2395–2400

    Article  PubMed  Google Scholar 

  • Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163. doi:10.1016/j.cell.2008.12.004

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19:107–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Sowter HM, Sivridis E, Gibson S, Gatter KC, Harris AL (2004) BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res 10:5566–5571

    Article  PubMed  CAS  Google Scholar 

  • Goel A et al (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63:1608–1614

    PubMed  CAS  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2 alpha promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11:335–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  • Greenson JK et al (2009) Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol 33:126–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Greijer AE, Diemen P, Fijneman RJA, Giles RH, Voest EE, van Hinsbergh VWM, Meijer GA (2008) Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum. Virchows Arch 452:535–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guthrie GJK, Roxburgh CSD, Horgan PG, McMillan DC (2013a) Does interleukin-6 link explain the link between tumour necrosis, local and systemic inflammatory responses and outcome in patients with colorectal cancer? Cancer Treat Rev 39:89–96

    Article  PubMed  CAS  Google Scholar 

  • Guthrie GJK, Roxburgh CSD, Richards CH, Horgan PG, McMillan DC (2013b) Circulating IL-6 concentrations link tumour necrosis and systemic and local inflammatory responses in patients undergoing resection for colorectal cancer. Br J Cancer 109:131–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  • Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkins N et al (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122:1376–1387

    Article  PubMed  CAS  Google Scholar 

  • He SD, Wang L, Miao L, Wang T, Du FH, Zhao LP, Wang XD (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Hiraki M et al (2010) CpG island methylation of BNIP3 predicts resistance against S-1/CPT-11 combined therapy in colorectal cancer patients. Oncol Rep 23:191–197

    PubMed  CAS  Google Scholar 

  • Hitomi JI, Christofferson DE, Ng A, Yao JH, Degterev A, Xavier RJ, Yuan JY (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CY, Kuo WT, Huang YC, Lee TC, Yu LCH (2013) Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis 4:e622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaelin WG (2008) The von Hippel-Lindau tumour suppressor protein: O-2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  PubMed  CAS  Google Scholar 

  • Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9:210–217

    Article  PubMed  CAS  Google Scholar 

  • Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S (1998) Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143:1353–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Ito H, Miki C (1999) Serum interleukin-6 level reflects the tumor proliferative activity in patients with colorectal carcinoma. Cancer 85:2526–2531

    Article  PubMed  CAS  Google Scholar 

  • Klarskov L, Holck S, Bernstein I, Okkels H, Rambech E, Baldetorp B, Nilbert M (2011) Challenges in the identification of MSH6-associated colorectal cancer: rectal location, less typical histology, and a subset with retained mismatch repair function. Am J Surg Pathol 35:1391–1399

    Article  PubMed  Google Scholar 

  • Knupfer H, Preiss R (2010) Serum interleukin-6 levels in colorectal cancer patients-a summary of published results. Int J Colorectal Dis 25:135–140

    Article  PubMed  Google Scholar 

  • Koshiji M, To KKW, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE (2005) HIF-1 alpha induces genetic instability by transcriptionally downregulating MutS alpha expression. Mol Cell 17:793–803

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Polychronidis A, Simopoulos C, Gatter KC, Harris AL, Sivridis E (2006) Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci 97:582–588

    Article  PubMed  CAS  Google Scholar 

  • Krishnamachary B et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    PubMed  CAS  Google Scholar 

  • Kuniyasu H, Chihara Y, Takahashi T (2003) Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 10:445–448

    PubMed  Google Scholar 

  • Lee Y, Shacter E (1999) Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 274:19792–19798

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YY, Hsieh LL, Tang RP, Liao SK, Yeh KY (2009) Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum Immunol 70:151–158

    Article  PubMed  CAS  Google Scholar 

  • Li JJ et al (2011) A dual-targeting anticancer approach: soil and seed principle. Radiology 260:799–807

    Article  PubMed  Google Scholar 

  • Lipkin SM et al (2004) The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet 36:694–699

    Article  PubMed  CAS  Google Scholar 

  • Loncaster JA et al (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61:6394–6399

    PubMed  CAS  Google Scholar 

  • Maihofner C, Charalambous MP, Bhambra U, Lightfoot T, Geisslinger G, Gooderham NJ (2003) Expression of cyclooxygenase-2 parallels expression of interleukin-1beta, interleukin-6 and NF-kappaB in human colorectal cancer. Carcinogenesis 24:665–671

    Article  PubMed  CAS  Google Scholar 

  • Majmundar AJ, Wong WHJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao YT, Li CY, Dewhirst MW (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8:99–110

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy HE, Toner M, Patchett SE, Daly L, Odonoghue DP (1997) Identifying stage B colorectal cancer patients at high risk of tumor recurrence and death. Dis Colon Rectum 40:326–331

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  • Olive PL, Aquino-Parsons C, MacPhail SH, Liao SY, Raleigh JA, Lerman MI, Stanbridge EJ (2001) Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Res 61:8924–8929

    PubMed  CAS  Google Scholar 

  • Papucci L et al (2004) Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 316:197–209

    Article  PubMed  CAS  Google Scholar 

  • Pestka S, Krause CD, Sarkar D, Walter MR, Shi YF, Fisher PB (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979

    Article  PubMed  CAS  Google Scholar 

  • Piret JP, Mottet D, Raes M, Michiels C (2002) Is HIF-1 alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 64:889–892

    Article  PubMed  CAS  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth-factor is a potential tumor angiogenesis factor in human gliomas invivo. Nature 359:845–848

    Article  PubMed  CAS  Google Scholar 

  • Pollheimer MJ, Kornprat P, Lindtner RA, Harbaum L, Schlemmer A, Rehak P, Langner C (2010) Tumor necrosis is a new promising prognostic factor in colorectal cancer. Hum Pathol 41:1749–1757. doi:10.1016/j.humpath.2010.04.018

    Article  PubMed  CAS  Google Scholar 

  • Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1 alpha as a cancer drug target. Mol Cancer Ther 3:647–654

    PubMed  CAS  Google Scholar 

  • Ramanujan S, Koenig GC, Padera TP, Stoll BR, Jain RK (2000) Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res 60:1442–1448

    PubMed  CAS  Google Scholar 

  • Rashid A, Shen LL, Morris JS, Issa JPJ, Hamilton SR (2001) CpG island methylation in colorectal adenomas. Am J Pathol 159:1129–1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribatti D (2009) Endogenous inhibitors of angiogenesis a historical review. Leuk Res 33:638–644

    Article  PubMed  CAS  Google Scholar 

  • Richards CH, Mohammed Z, Qayyum T, Horgan PG, McMillan DC (2011) The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol (London, England) 7:1223–1235. doi:10.2217/fon.11.99

    Article  CAS  Google Scholar 

  • Richards CH, Roxburgh CSD, Anderson JH, McKee RF, Foulis AK, Horgan PG, McMillan DC (2012) Prognostic value of tumour necrosis and host inflammatory responses in colorectal cancer. Br J Surg 99:287–294

    Article  PubMed  CAS  Google Scholar 

  • Roxburgh CSD, McMillan DC (2012) The role of the in situ local inflammatory response in predicting recurrence and survival in patients with primary operable colorectal cancer. Cancer Treat Rev 38:451–466

    Article  PubMed  CAS  Google Scholar 

  • Sasahira T, Akama Y, Fujii K, Kuniyasu H (2005) Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch 446:411–415

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  • Seeber LM, Horree N, van der Groep P, van der Wall E, Verheijen RH, van Diest PJ (2010a) Necrosis related HIF-1alpha expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC Cancer 10:307. doi:10.1186/1471-2407-10-307

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeber LMS, Horree N, van der Groep P, van der Wall E, Verheijen RHM, van Diest PJ (2010b) Necrosis related HIF-1 alpha expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC Cancer 10(1):307

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S et al (2005) Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer 104:511–520

    Article  PubMed  Google Scholar 

  • Shahrzad S, Quayle L, Stone C, Plumb C, Shirasawa S, Rak JW, Coomber BL (2005) Ischemia-induced K-ras mutations in human colorectal cancer cells: role of microenvironmental regulation of MSH2 expression. Cancer Res 65:8134–8141

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth-factor induced by hypoxia May mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth-factor expression by hypoxia and by glucose deficiency in multicell spheroids—implications for tumor angiogenesis. Proc Natl Acad Sci USA 92:768–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA-Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  • Simiantonaki N, Taxeidis M, Jayasinghe C, Kurzik-Dumke U, Kirkpatrick CJ (2008) Hypoxia-inducible factor I alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer 8(1):320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485

    Article  PubMed  CAS  Google Scholar 

  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673

    PubMed  CAS  Google Scholar 

  • Sowter HM, Ferguson M, Pym C, Watson P, Fox SB, Han C, Harris AL (2003) Expression of the cell death genes BNip3 and NIX in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. J Pathol 201:573–580

    Article  PubMed  CAS  Google Scholar 

  • Street HH et al (2006) Phase I study of 131I-chimeric(ch) TNT-1/B monoclonal antibody for the treatment of advanced colon cancer. Cancer Biother Radiopharm 21:243–256. doi:10.1089/cbr.2006.21.243

    Article  PubMed  CAS  Google Scholar 

  • Swinson DEB, Jones JL, Richardson D, Cox G, Edwards JG, O’Byrne KJ (2002) Tumour necrosis is an independent prognostic marker in non-small cell lung cancer: correlation with biological variables. Lung Cancer 37:235–240

    Article  PubMed  Google Scholar 

  • Takahashi Y, Tucker SL, Kitadai Y, Koura AN, Bucana CD, Cleary KR, Ellis LM (1997) Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer. Arch Surg 132:541–546

    Article  PubMed  CAS  Google Scholar 

  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van de Putte M, Ni Y, De Witte PAM (2008a) Exploration of the mechanism underlying the tumor necrosis avidity of hypericin. Oncol Rep 19:921–926

    PubMed  Google Scholar 

  • Van de Putte M, Wang HJ, Chen F, de Witte PAM, Ni YC (2008b) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol 15:107–113

    Article  PubMed  Google Scholar 

  • Vande Velde C et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood-Flow, Oxygen and nutrient supply, and metabolic microenvironment of human-tumors—a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9:801–808

    Article  PubMed  CAS  Google Scholar 

  • Vleugel MM et al (2005) Differential prognostic impact of hypoxia induced and diffuse HIF-1 alpha expression in invasive breast cancer. J Clin Pathol 58:172–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HC et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  • Welz PS et al (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  PubMed  CAS  Google Scholar 

  • Wincewicz A, Sulkowska M, Koda M, Sulkowski S (2007) Clinicopathological significance and linkage of the distribution of HIF-1alpha and GLUT-1 in human primary colorectal cancer. Pathol Oncol Res POR 13:15–20

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang HC, Tracey KJ (2001) HMG-1 rediscovered as a cytokine. Shock 15:247–253

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H et al (2004) Prognostic impact of hypoxia-inducible factors 1 alpha and 2 alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res 10:8554–8560

    Article  PubMed  CAS  Google Scholar 

  • Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  PubMed  CAS  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15. doi:10.1101/gad.1376506

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, L. The recent progress of the mechanism and regulation of tumor necrosis in colorectal cancer. J Cancer Res Clin Oncol 142, 453–463 (2016). https://doi.org/10.1007/s00432-015-1997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1997-z

Keywords

Navigation