Skip to main content

Advertisement

Log in

‘From immunosenescence to immune modulation’: a re-appraisal of the role of cytomegalovirus as major regulator of human immune function

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

In the year 2000, cytomegalovirus was identified as a risk factor for mortality in a seminal study of octogenarian residents in Sweden. This finding triggered a wave of additional epidemiological investigations, some of which supported this association whilst others observed no such effect. In addition, this increased risk of death in CMV-seropositive people was correlated with observed changes within the T-cell repertoire such that accelerated ‘immunosenescence’ became a de facto explanation, without strong evidence to this effect. Recent years have seen a re-appraisal of these findings. Interestingly, many studies show that cytomegalovirus acts to improve immune function, most clearly in younger donors. In addition, the excess mortality in older people that is observed in CMV-seropositive cohorts appears to be related primarily to an excess of vascular disease rather than impairment of immune function. CMV is an important member of the natural ‘virome’ of Homo sapiens and has an important, and generally positive, modulatory influence on human immune function throughout most of life. However, within certain populations, this influence can become negative and age, co-morbidity and environment all act as determinants of this effect. As such, it is important that new interventions are developed that can mitigate the damaging influence of CMV on human health in populations at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olsson J, Wikby A, Johansson B, Löfgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121(1–3):187–201

    CAS  PubMed  Google Scholar 

  2. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2–3):445–453

    CAS  PubMed  Google Scholar 

  3. Strindhall J, Nilsson BO, Lofgren S, Ernerudh J, Pawelec G, Johansson B, Wikby A (2007) No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42(8):753–761

    CAS  PubMed  Google Scholar 

  4. Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE (2008) The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology 9(5):299–308

    PubMed  Google Scholar 

  5. Strandberg TE, Pitkala KH, Tilvis RS (2009) Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. JAMA 301(4):380–382

    CAS  PubMed  Google Scholar 

  6. Thomasini RL, Pereira DS, Pereira FSM, Mateo EC, Mota TN, Guimarães GG, Pereira LSM, Lima CX, Teixeira MM, Junior Teixeira AL (2017) Aged-associated cytomegalovirus and Epstein–Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women. PLoS One 12(7):e0180841

    PubMed  PubMed Central  Google Scholar 

  7. Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB, Detrick B, McDyer JF, Semba RD, Casolaro V, Walston JD, Fried LP (2010) Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol 171(10):1144–1152

    PubMed  PubMed Central  Google Scholar 

  8. Roberts ET, Haan MN, Dowd JB, Aiello AE (2010) Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 172(4):363–371

    PubMed  PubMed Central  Google Scholar 

  9. Feinstein L, Douglas CE, Stebbins RC, Pawelec G, Simanek AM, Aiello AE (2016) Does cytomegalovirus infection contribute to socioeconomic disparities in all-cause mortality? Mech Ageing Dev 158:53–56

    PubMed  PubMed Central  Google Scholar 

  10. Vescovini R, Biasini C, Telera AR, Basaglia M, Stella A, Magalini F, Bucci L, Monti D, Lazzarotto T, Dal Monte P et al (2010) Intense antiextracellular adaptive immune response to human cytomegalovirus in very old subjects with impaired health and cognitive and functional status. J Immunol 184(6):3242–3249

    CAS  PubMed  Google Scholar 

  11. Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, Moss PA, Medical Research Council Cognitive Function and Ageing Study (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387

    CAS  PubMed  Google Scholar 

  12. Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U (2012) Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog 8(8):e1002850

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, Nikolich-Zugich J (2012) Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog 28(8):e1002849

    Google Scholar 

  14. Goldeck D, Oettinger L, Janssen N, Demuth I, Steinhagen-Thiessen E, Pawelec G (2016) Cytomegalovirus infection minimally affects the frequencies of B-cell phenotypes in peripheral blood of younger and older adults. Gerontology 62(3):323–329

    CAS  PubMed  Google Scholar 

  15. Colonna-Romano G, Akbar AN, Aquino A, Bulati M, Candore G, Lio D, Ammatuna P, Fletcher JM, Caruso C, Pawelec G (2008) Impact of CMV and EBV seropositivity on CD8 T lymphocytes in an old population from West-Sicily. Immun Ageing 5:14

    Google Scholar 

  16. Matheï C, Adriaensen W, Vaes B, Van Pottelbergh G, Wallemacq P, Degryse J (2015) No relation between CMV infection and mortality in the oldest old: results from the Belfrailstudy. Age Ageing 44(1):130–135

    PubMed  Google Scholar 

  17. Collerton J, Martin-Ruiz C, Davies K, Hilkens CM, Isaacs J, Kolenda C, Parker C, Dunn M, Catt M, Jagger C, von Zglinicki T, Kirkwood TB (2012) Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ Study. Mech Ageing Dev 133(6):456–466

    CAS  PubMed  Google Scholar 

  18. Cicin-Sain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW, Fischer MB, Koudelka CW, Axthelm MK, Nikolich-Zugich J, Picker LJ (2011) Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187(4):1722–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Matheï C, Vaes B, Wallemacq P, Degryse J (2011) Associations between cytomegalovirus infection and functional impairment and frailty in the BELFRAIL Cohort. J Am Geriatr Soc 59(12):2201–2208

    PubMed  Google Scholar 

  20. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329

    CAS  PubMed  Google Scholar 

  21. Marandu TF, Oduro JD, Borkner L, Dekhtiarenko I, Uhrlaub JL, Drabig A, Kröger A, Nikolich-Zugich J, Cicin-Sain L (2015) Immune protection against virus challenge in aging mice is not affected by latent herpesviral infections. J Virol 89(22):11715–11717

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Smithey MJ, Venturi V, Davenport MP, Buntzman AS, Vincent BG, Frelinger JA, Nikolich-Žugich J (2018) Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci USA 115(29):E6817–E6825

    CAS  PubMed  Google Scholar 

  23. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, Kidd BA, Maecker HT, Concannon P, Dekker CL, Thomas PG, Davis MM (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7(281):281ra43

    PubMed  PubMed Central  Google Scholar 

  24. Holder B, Miles DJ, Kaye S, Crozier S, Mohammed NI, Duah NO, Roberts E, Ojuola O, Palmero MS, Touray ES, Waight P, Cotten M, Rowland-Jones S, van der Sande M, Whittle H (2010) Epstein-Barr virus but not cytomegalovirus is associated with reduced vaccine antibody responses in Gambian infants. PLoS One 5(11):e14013

    PubMed  PubMed Central  Google Scholar 

  25. Miles DJ, Sanneh M, Holder B, Crozier S, Nyamweya S, Touray ES, Palmero MS, Zaman SM, Rowland-Jones S, van der Sande M, Whittle H (2008) Cytomegalovirus infection induces T-cell differentiation without impairing antigen-specific responses in Gambian infants. Immunology 124(3):388–400

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pera A, Campos C, Corona A, Sanchez-Correa B, Tarazona R, Larbi A, Solana R (2014) CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals. PLoS One 9:e88538

    PubMed  PubMed Central  Google Scholar 

  27. Cadwell K (2015) The virome in host health and disease. Immunity 42(5):805–813

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hosie L, Pachnio A, Zuo J, Pearce H, Riddell S, Moss P (2017) Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8+ T-Cell Repertoire in Older People. Front Immunol 8:1776

    PubMed  PubMed Central  Google Scholar 

  29. Cudini J, Roy S, Houldcroft CJ, Bryant JM, Depledge DP, Tutill H, Veys P, Williams R, Worth AJJ, Tamuri AU, Goldstein RA, Breuer J (2019) Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination. Proc Natl Acad Sci USA 116(12):5693–5698

    CAS  PubMed  Google Scholar 

  30. Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss MR, Hamprecht K, Yamamoto AY, Mussi-Pinhata MM, Britt WJ, Jensen JD, Kowalik TF (2015) Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci USA 112(30):E4120–E4128

    CAS  PubMed  Google Scholar 

  31. Redeker A, Remmerswaal EBM, van der Gracht ETI, Welten SPM, Höllt T, Koning F, Cicin-Sain L, Nikolich-Žugich J, Ten Berge IJM, van Lier RAW, van Unen V, Arens R (2018) The contribution of cytomegalovirus infection to immune senescence is set by the infectious dose. Front Immunol 8:1953

    PubMed  PubMed Central  Google Scholar 

  32. Böhm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82(23):11637–11650

    PubMed  PubMed Central  Google Scholar 

  33. Böhm V, Seckert CK, Simon CO, Thomas D, Renzaho A, Gendig D, Holtappels R, Reddehase MJ (2009) Immune evasion proteins enhance cytomegalovirus latency in the lungs. J Virol 83(19):10293–10298

    PubMed  PubMed Central  Google Scholar 

  34. Snyder CM, Cho KS, Bonnett EL, Allan JE, Hill AB (2011) Sustained CD8+ T cell memory inflation after infection with a single-cycle cytomegalovirus. PLoS Pathog 7(10):e1002295

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Trgovcich J, Kincaid M, Thomas A, Griessl M, Zimmerman P, Dwivedi V, Bergdall V, Klenerman P, Cook CH (2016) Cytomegalovirus reinfections stimulate CD8 T-memory inflation. PLoS One 11(11):e0167097

    Google Scholar 

  36. Goldeck D, Larsen LA, Christiansen L, Christensen K, Hamprecht K, Pawelec G, Derhovanessian E (2016) Genetic influence on the peripheral blood CD4+ T-cell differentiation status in CMV infection. J Gerontol A Biol Sci Med Sci 71(12):1537–1543

    CAS  PubMed  Google Scholar 

  37. Scepanovic P, Alanio C, Hammer C, Hodel F, Bergstedt J, Patin E, Thorball CW, Chaturvedi N, Charbit B, Abel L, Quintana-Murci L, Duffy D, Albert ML, Fellay J, Milieu Intérieur Consortium (2018) Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med 10(1):59

    PubMed  PubMed Central  Google Scholar 

  38. Misra MK, Mishra A, Pandey SK, Kapoor R, Sharma RK, Agrawal S (2015) Genetic variation in Micro-RNA genes of host genome affects clinical manifestation of symptomatic Human Cytomegalovirus infection. Hum Immunol 76(10):765–769

    CAS  PubMed  Google Scholar 

  39. Studzińska M, Jabłońska A, Wiśniewska-Ligier M, Nowakowska D, Gaj Z, Leśnikowski ZJ, Woźniakowska-Gęsicka T, Wilczyński J, Paradowska E (2017) Association of TLR3 L412F Polymorphism with cytomegalovirus infection in children. PLoS One 12(1):e0169420

    PubMed  PubMed Central  Google Scholar 

  40. Jabłońska A, Paradowska E, Studzińska M, Suski P, Nowakowska D, Wiśniewska-Ligier M, Woźniakowska-Gęsicka T, Wilczyński J, Leśnikowski ZJ (2014) Relationship between toll-like receptor 2 Arg677Trp and Arg753Gln and toll-like receptor 4 Asp299Gly polymorphisms and cytomegalovirus infection. Int J Infect Dis 25:11–15

    PubMed  Google Scholar 

  41. Mitsani D, Nguyen MH, Girnita DM, Spichty K, Kwak EJ, Silveira FP, Toyoda Y, Pilewski JM, Crespo M, Bhama JK, Abdel-Massih R, Zaldonis D, Zeevi A, Clancy CJ (2011) A polymorphism linked to elevated levels of interferon-gamma is associated with an increased risk of cytomegalovirus disease among Caucasian lung transplant recipients at a single center. J Heart Lung Transpl 30(5):523–529. https://doi.org/10.1016/j.healun.2010.11.008

    Article  Google Scholar 

  42. Wujcicka W, Paradowska E, Studzińska M, Wilczyński J, Nowakowska D (2017) Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women. Virol J 14(1):64. https://doi.org/10.1186/s12985-017-0730-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoffmann TW, Halimi J-M, Büchler M, Velge-Roussel F, Goudeau A, Al-Najjar A, Marliere J-F, Lebranchu Y, Baron C (2010) Association between a polymorphism in the human programmed death-1 (PD-1) gene and cytomegalovirus infection after kidney transplantation. J Med Genet 47(1):54–58. https://doi.org/10.1136/jmg.2009.068841

    Article  CAS  PubMed  Google Scholar 

  44. Kijpittayarit S, Eid AJ, Brown RA, Paya CV, Razonable RR (2007) Relationship between toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin Infect Dis 44(10):1315–1320

    CAS  PubMed  Google Scholar 

  45. Miles DJ, van der Sande M, Jeffries D, Kaye S, Ojuola O, Sanneh M, Cox M, Palmero MS, Touray ES, Waight P et al (2008) Maintenance of large subpopulations of differentiated CD8 Tcells two years after cytomegalovirus infection in Gambian infants. PLoS One 3(8):2905

    Google Scholar 

  46. Kaye S, Miles D, Antoine P, Burny W, Ojuola B, Kaye P, Rowland-Jones S, Whittle H, van der Sande M, Marchant A (2008) Virological and immunological correlates of mother-to-child transmission of cytomegalovirus in The Gambia. J Infect Dis 197(9):1307–1314

    PubMed  Google Scholar 

  47. Gompels UA, Larke N, Sanz-Ramos M, Bates M, Musonda K, Manno D, Siame J, Monze M, Filteau S (2012) CIGNIS Study Group. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 54(3):434–442

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bates M, Brantsaeter AB (2016) Human cytomegalovirus (CMV) in Africa: a neglected but important pathogen. J Virus Erad 2(3):136–142

    PubMed  PubMed Central  Google Scholar 

  49. Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3):423–432

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hassouneh F, Lopez-Sejas N, Campos C, Sanchez-Correa B, Tarazona R, Solana R, Pera A (2017) Differential effect of cytomegalovirus infection with age on the expression of CD57, CD300a, and CD161 on T-cell subpopulations. Front Immunol 8:649

    PubMed  PubMed Central  Google Scholar 

  51. Weinberger B, Lazuardi L, Weiskirchner I, Keller M, Neuner C, Fischer KH, Neuman B, Wurzner R, Grubeck-Loebenstein B (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T-cell subsets in the elderly. Hum Immunol 68(2):86–90

    CAS  PubMed  Google Scholar 

  52. Gillespie GM, Wills MR, Appay V, O’Callaghan C, Murphy M, Smith N, Sissons P, Rowland-Jones S, Bell JI, Moss PA (2000) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol 74(17):8140–8150

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16(6):367–377

    CAS  PubMed  Google Scholar 

  54. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vescovini R, Biasini C, Fagnoni FF, Telera AR, Zanlari L, Pedrazzoni M, Bucci L, Monti D, Medici MC, Chezzi C et al (2007) Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol 179(6):4283–4291

    CAS  PubMed  Google Scholar 

  56. Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR (2017) Latent Cytomegalovirus (CMV) infection does not detrimentally alter t cell responses in the healthy old, but increased latent CMV carriage is related to expanded CMV-specific T cells. Front Immunol 8:733

    PubMed  PubMed Central  Google Scholar 

  58. Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Žugich D, Kaye J, Nikolich-Žugich J (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192(5):2143–2155

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, Griffiths M, Pratt G, Moss P (2016) Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing 13:1

    PubMed  PubMed Central  Google Scholar 

  60. Smith CJ, Turula H, Snyder CM (2014) Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 10(7):1004233

    Google Scholar 

  61. Zalli A, Bosch JA, Goodyear O, Riddell N, McGettrick HM, Moss P (2015) Wallace GR Targeting ß2 adrenergic receptors regulate human T cell function directly and indirectly. Brain Behav Immun 45:211–218. https://doi.org/10.1016/j.bbi.2014.12.001(Epub 2014 Dec 16)

    Article  CAS  PubMed  Google Scholar 

  62. Trzonkowski P, Mysliwska J, Pawelec G, Mysliwski A (2009) From bench to bedside and back: the SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 10(1):83–94

    PubMed  Google Scholar 

  63. Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, Machala M, Mysliwski A (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of antihemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine 21:3826–3836

    CAS  PubMed  Google Scholar 

  64. Merani S, Pawelec G, Kuchel GA, McElhaney JE (2017) Impact of aging and cytomegalovirus on immunological response to influenza vaccination and infection. Front Immunol 8:784

    PubMed  PubMed Central  Google Scholar 

  65. den Elzen WP, Vossen AC, Cools HJ, Westendorp RG, Kroes AC, Gussekloo J (2011) Cytomegalovirus infection and responsiveness to influenza vaccination in elderly residents of long-term care facilities. Vaccine 29(29–30):4869–4874

    Google Scholar 

  66. Haq K, Fulop T, Tedder G, Gentleman B, Garneau H, Meneilly GS, Kleppinger A, Pawelec G, McElhaney JE (2017) Cytomegalovirus seropositivity predicts a decline in the T cell but not the antibody response to influenza in vaccinated older adults independent of type 2 diabetes status. J Gerontol A Biol Sci Med Sci 72(9):1163–1170

    CAS  PubMed  Google Scholar 

  67. van den Berg SPH, Wong A, Hendriks M, Jacobi RHJ, van Baarle D, van Beek J (2018) Negative effect of age, but not of latent cytomegalovirus infection on the antibody response to a novel influenza vaccine strain in healthy adults. Front Immunol 9:82

    PubMed  PubMed Central  Google Scholar 

  68. Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6(2):16103

    Google Scholar 

  69. Strandberg TE, Pitkala KH, Tilvis RS (2009) Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. JAMA 301:380–382

    CAS  PubMed  Google Scholar 

  70. Muhlestein JB, Horne BD, Carlquist JF, Madsen TE, Bair TL, Pearson RR, Anderson JL (2000) Cytomegalovirus seropositivity and C-reactive protein have independent and combined predictive value for mortality in patients with angiographically demonstrated coronary artery disease. Circulation 102:1917–1923

    CAS  PubMed  Google Scholar 

  71. Goulenok T, Boyd A, Larsen M, Fastenackels S, Boccara F, Meynard JL, Hadour N, Samri A, Desvarieux M, Autran B, Appay V, Girard PM, Sauce D, CHIC Study group (2015) Increased carotid intima-media thickness is not associated with T-cell activation nor with cytomegalovirus in HIV-infected never-smoker patients. AIDS 29(3):287–293

    CAS  PubMed  Google Scholar 

  72. Ji YN, An L, Zhan P, Chen XH (2012) Cytomegalovirus infection and coronary heart disease risk: a meta-analysis. Mol Biol Rep 39(6):6537–6546

    CAS  PubMed  Google Scholar 

  73. Nieto FJ, Adam E, Sorlie P, Farzadegan H, Melnick JL, Comstock GW, Szklo M (1996) Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 94:922–927

    CAS  PubMed  Google Scholar 

  74. Wall NA, Chue CD, Edwards NC, Pankhurst T, Harper L, Steeds RP, Lauder S, Townend JN, Moss P, Ferro CJ (2013) Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS One 8(2):e55686

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu HT, Youn JC, Kim JH, Seong YJ, Park SH, Kim HC, Lee WW, Park S, Shin EC (2017) Arterial stiffness is associated with cytomegalovirus-specific senescent CD8+ T cells. J Am Heart Assoc 6(9):e006535

    PubMed  PubMed Central  Google Scholar 

  76. Yu HT, Park S, Shin EC, Lee WW (2016) T cell senescence and cardiovascular diseases. Clin Exp Med 16(3):257–263

    CAS  PubMed  Google Scholar 

  77. Firth C, Harrison R, Ritchie S, Wardlaw J, Ferro CJ, Starr JM, Deary IJ, Moss P (2016) Cytomegalovirus infection is associated with an increase in systolic blood pressure in older individuals. QJM 109(9):595–600

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng J, Ke Q, Jin Z, Wang H, Kocher O, Morgan JP, Zhang J, Crumpacker CS (2009) Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog 5:e1000427

    PubMed  PubMed Central  Google Scholar 

  79. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124(2):175–184

    CAS  PubMed  Google Scholar 

  80. Petrakopoulou P, Kübrich M, Pehlivanli S, Meiser B, Reichart B, von Scheidt W, Weis M (2004) Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation 110(11 Suppl 1):207–212

    Google Scholar 

  81. Pampou S, Gnedoy SN, Bystrevskaya VB, Smirnov VN, Chazov EI, Melnick JL, DeBakey ME (2000) Cytomegalovirus genome and the immediate-early antigen in cells of different layers of human aorta. Virchows Arch 436:539–552

    CAS  PubMed  Google Scholar 

  82. Pachnio A, Ciaurriz M, Begum J, Lal N, Zuo J, Beggs A, Moss P (2016) Cytomegalovirus infection leads to development of high frequencies of cytotoxic virus-specific CD4+ T cells targeted to vascular endothelium. PLoS Pathog 12(9):e1005832

    PubMed  PubMed Central  Google Scholar 

  83. Bolovan-Fritts CA, Spector SA (2008) Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR86 interaction. Blood 111:175–182

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Reed RG, Greenberg RN, Segerstrom SC (2017) Cytomegalovirus serostatus, inflammation, and antibody response to influenza vaccination in older adults: The moderating effect of beta blockade. Brain Behav Immun 61:14–20

    CAS  PubMed  Google Scholar 

  85. Beswick M, Pachnio A, Lauder SN, Sweet C, Moss PA (2013) Antiviral therapy can reverse the development of immune senescence in elderly mice with latent cytomegalovirus infection. J Virol 87(2):779–789

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chanouzas D, Sagmeister M, Dyall L, Sharp P, Powley L, Johal S, Bowen J, Nightingale P, Ferro CJ, Morgan MD, Moss P, Harper L (2018) The host cellular immune response to cytomegalovirus targets the endothelium and is associated with increased arterial stiffness in ANCA-associated vasculitis. Arthritis Res Ther 20(1):194

    PubMed  PubMed Central  Google Scholar 

  87. Chanouzas D, Sagmeister M, Faustini S, Nightingale P, Richter A, Ferro CJ, Morgan MD, Moss P, Harper L (2019) Subclinical reactivation of cytomegalovirus drives CD4+CD28null T-cell expansion and impaired immune response to pneumococcal vaccination in antineutrophil cytoplasmic antibody-associated vasculitis. J Infect Dis 219(2):234–244

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank all members of the laboratory who have contributed to our studies over many years, financial support from the Medical Research Council and the generous and altruistic involvement of donors and patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Moss.

Ethics declarations

Conflict of interest

The author declares to have no conflict of interest.

Additional information

Edited by: Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Immunological Imprinting during Chronic Viral Infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, P. ‘From immunosenescence to immune modulation’: a re-appraisal of the role of cytomegalovirus as major regulator of human immune function. Med Microbiol Immunol 208, 271–280 (2019). https://doi.org/10.1007/s00430-019-00612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00612-x

Keywords

Navigation