Skip to main content
Log in

Exploring brain functional plasticity in world class gymnasts: a network analysis

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Long-term motor skill learning can induce plastic structural and functional reorganization of the brain. Our previous studies detected brain structural plasticity related to long-term intensive gymnastic training in world class gymnasts (WCGs). The goal of this study was to investigate brain functional plasticity in WCGs by using network measures of brain functional networks. Specifically, we acquired resting-state fMRI data from 13 WCGs and 14 controls, constructed their brain functional networks, and compared the differences in their network parameters. At the whole brain level, we detected significantly decreased overall functional connectivity (FC) and decreased local and global efficiency in the WCGs compared to the controls. At the modular level, we found intra- and inter-modular reorganization in three modules, the cerebellum, the cingulo-opercular and fronto-parietal networks, in the WCGs. On the nodal level, we revealed significantly decreased nodal strength and efficiency in several non-rich club regions of these three modules in the WCGs. These results suggested that functional plasticity can be detected in the brain functional networks of WCGs, especially in the cerebellum, fronto-parietal network, and cingulo-opercular network. In addition, we found that the FC between the fronto-parietal network and the sensorimotor network was significantly negatively correlated with the number of years of training in the WCGs. These findings may help us to understand the outstanding gymnastic performance of the gymnasts and to reveal the neural mechanisms that distinguish WCGs from controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19(12):1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Cortese S, Tansella M (2015) Neural bases of atypical emotional face processing in autism: a meta-analysis of fMRI studies. World J Biol Psychiatry 16(5):291–300

    Article  PubMed  Google Scholar 

  • Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 14(5):208–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi G, Ricciardi E, Sani L, Gaglianese A, Papasogli A, Ceccarelli R, Franzoni F, Galetta F, Santoro G, Goebel R, Pietrini P (2013) How skill expertise shapes the brain functional architecture: an fMRI study of visuo-spatial and motor processing in professional racing-car and naive drivers. Plos One 8(10):e77764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A (2012) Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59(2):1404–1412

    Article  PubMed  Google Scholar 

  • Charlesworth JD, Warren TL, Brainard MS (2012) Covert skill learning in a cortical-basal ganglia circuit. Nature 486(7402):251–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  • Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16(9):1348–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin G, Kahn RS, de Reus MA, Cahn W, van den Heuvel MP (2014a) Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophr Bull 40(2):438–448

    Article  PubMed  Google Scholar 

  • Collin G, Sporns O, Mandl RC, van den Heuvel MP (2014b) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex 24(9):2258–2267

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  • Coynel D, Marrelec G, Perlbarg V, Pélégrini-Issac M, Van de Moortele PF, Ugurbil K, Doyon J, Benali H, Lehéricy S (2010) Dynamics of motor-related functional integration during motor sequence learning. Neuroimage 49(1):759–776

    Article  PubMed  Google Scholar 

  • Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernandez-Espejo D, Pickard JD, Laureys S, Owen AM (2011) Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378(9809):2088–2094

    Article  PubMed  Google Scholar 

  • Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Reus MA, van den Heuvel MP (2013a) The parcellation-based connectome: limitations and extensions. Neuroimage  80:397–404

    Article  PubMed  Google Scholar 

  • de Reus MA, van den Heuvel MP (2013b) Rich club organization and intermodule communication in the cat connectome. J Neurosci 33(32):12929–12939

    Article  PubMed  CAS  Google Scholar 

  • Desco M, Hernandez JA, Santos A, Brammer M (2001) Multiresolution analysis in fMRI: sensitivity and specificity in the detection of brain activation. Hum Brain Mapp 14(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rockstroh B, Bassett DS (2009) Reproducibility of graph metrics of human brain functional networks. Neuroimage 47(4):1460–1468

    Article  PubMed  Google Scholar 

  • Di Paola M, Caltagirone C, Petrosini L (2013) Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe. Hum Brain Mapp 34(10):2707–2714

    Article  PubMed  Google Scholar 

  • Di X, Zhu S, Jin H, Wang P, Ye Z, Zhou K, Zhuo Y, Rao H (2012) Altered resting brain function and structure in professional badminton players. Brain Connect 2(4):225–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104(26):11073–11078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Ungerleider LG, Squire L, Schacter D (2002) Functional anatomy of motor skill learning. Neuropsychol Mem 3:225–238

    Google Scholar 

  • Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Lehericy S, Benali H (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199(1):61–75

    Article  PubMed  Google Scholar 

  • Duan X, He S, Liao W, Liang D, Qiu L, Wei L, Li Y, Liu C, Gong Q, Chen H (2012) Reduced caudate volume and enhanced striatal-DMN integration in chess experts. Neuroimage 60(2):1280–1286

    Article  PubMed  Google Scholar 

  • Fine EJ, Ionita CC, Lohr L (2002) The history of the development of the cerebellar examination. Semin Neurol 22(4):375–384

    Article  PubMed  Google Scholar 

  • Floyer-Lea A, Matthews PM (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 94(1):512–518

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT (2015) The (in)stability of functional brain network measures across thresholds. Neuroimage 118:651–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78

    Article  PubMed  Google Scholar 

  • Guerra-Carrillo B, Mackey AP, Bunge SA (2014) Resting-state fMRI a window into human brain plasticity. Neuroscientist. http://nro.sagepub.com/content/early/2014/02/21/1073858414524442.full.pdf+html

  • Hamzei F, Glauche V, Schwarzwald R, May A (2012) Dynamic gray matter changes within cortex and striatum after short motor skill training are associated with their increased functional interaction. Neuroimage 59(4):3364-3372

    Article  PubMed  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. Plos One 7(9):e46497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslinger B, Erhard P, Altenmuller E, Hennenlotter A, Schwaiger M, Grafin von Einsiedel H, Rummeny E, Conrad B, Ceballos-Baumann AO (2004) Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum Brain Mapp 22(3):206–215

    Article  PubMed  Google Scholar 

  • He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. Plos One 4(4):e5226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Lu M, Song Z, Wang J (2013) Long-term intensive training induced brain structural changes in world class gymnasts. Brain Struct Funct 220(2):625–644

    Article  PubMed  Google Scholar 

  • Jancke L, Koeneke S, Hoppe A, Rominger C, Hanggi J (2009) The architecture of the golfer’s brain. Plos One 4(3):e4785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang G, Wen X, Qiu Y, Zhang R, Wang J, Li M, Ma X, Tian J, Huang R (2013) Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study. Plos One 8(12):e82715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Lee HM, Kim WJ, Park HJ, Kim SW, Moon DH, Woo M, Tennant LK (2008) Neural correlates of pre-performance routines in expert and novice archers. Neurosci Lett 445(3):236–241

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol 21(4):636–644

    Article  CAS  PubMed  Google Scholar 

  • Kurata K (2005) Activity properties and location of neurons in the motor thalamus that project to the cortical motor areas in monkeys. J Neurophysiol 94(1):550–566

    Article  PubMed  Google Scholar 

  • Leiguarda RC, Marsden CD (2000) Limb apraxias—higher-order disorders of sensorimotor integration. Brain 123:860–879

    Article  PubMed  Google Scholar 

  • Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012) Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study. Plos One 7(3):e32766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Guo ZW, Lai YX, Liao W, Liu Q, Kendrick KM, Yao DZ, Li H (2012) Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI. Plos One 7(5):e36568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487   Ma L, Wang B, Narayana S, Hazeltine E, Chen X, Robin DA, Fox PT, Xiong J (2010) Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain research 1318:64-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Narayana S, Robin DA, Fox PT, Xiong J (2011) Changes occur in resting state network of motor system during 4weeks of motor skill learning. Neuroimage 58(1):226–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang B, Narayana S, Hazeltine E, Chen X, Robin DA, Fox PT, Xiong J (2010) Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain research 1318:64–76

    Article  CAS  PubMed  Google Scholar 

  • Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Marien P, Molinari M, Naito E, Nowak DA, Ben Taib NO, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus Paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11(2):457–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauk MD, Medina JF, Nores WL, Ohyama T (2000) Cerebellar function: coordination, learning or timing? Curr Biol 10(14):R522–R525

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Brandl F, Tahmasian M, Shao JM, Manoliu A, Scherr M, Schwerthoffer D, Bauml J, Forstl H, Zimmer C, Wohlschlager AM, Riedl V, Sorg C (2014) Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain 137:598–609

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Mowinckel AM, Espeseth T, Westlye LT (2012) Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. Neuroimage 63(3):1364–1373

    Article  PubMed  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905

    Article  PubMed  Google Scholar 

  • Nakao T, Radua J, Rubia K, Mataix-Cols D (2011) Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 168(11):1154–1163

    Article  PubMed  Google Scholar 

  • Nakata H, Yoshie M, Miura A, Kudo K (2010) Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev 62(2):197–211

    Article  PubMed  Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ (2012) Communities, modules and large-scale structure in networks. Nat Phys 8(1):25–31

    Article  CAS  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  • Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172

    Article  PubMed  Google Scholar 

  • Penhune VB, Steele CJ (2012) Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res 226(2):579–591

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6(3):342–353

    Article  CAS  PubMed  Google Scholar 

  • Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE (2011) Functional network organization of the human brain. Neuron 72(4):665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Miller M, Karalunas S, Robertson C, Grayson DS, Cary RP, Hawkey E, Painter JG, Kriz D, Fombonne E, Nigg JT, Fair DA (2014) Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: a rich club-organization study. Hum Brain Mapp 35(12):6032–6048

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901

    Article  CAS  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Sakai ST, Inase M, Tanji J (2002) The relationship between MI and SMA afferents and cerebellar and pallidal efferents in the macaque monkey. Somatosens Mot Res 19(2):139–148

    Article  PubMed  Google Scholar 

  • Sampaio-Baptista C, Scholz J, Jenkinson M, Thomas AG, Filippini N, Smit G, Douaud G, Johansen-Berg H (2014) Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage 96:158–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampaio-Baptista C, Filippini N, Stagg CJ, Near J, Scholz J, Johansen-Berg H (2015) Changes in functional connectivity and GABA levels with long-term motor learning. Neuroimage 106:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schendan HE, Searl MM, Melrose RJ, Stern CE (2003) An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37(6):1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, Pearlson G (2010) Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiat 68(1):61–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji J (1996) New concepts of the supplementary motor area. Curr Opin Neurobiol 6(6):782–787

    Article  CAS  PubMed  Google Scholar 

  • Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P (2011) Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 57(4):1492–1498

    Article  PubMed  Google Scholar 

  • Telesford QK, Burdette JH, Laurienti PJ (2013) An exploration of graph metric reproducibility in complex brain networks. Front Neurosci 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian L, Wang J, Yan C, He Y (2011) Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. NeuroImage 54(1):191–202

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, Kira J, Tobimatsu S (2014) Efficiency of a “small-world” brain network depends on consciousness level: a resting-state FMRI study. Cereb Cortex 24(6):1529–1539

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel M, Mandl R, Luigjes J, Pol HH (2008) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28(43):10844–10851

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel MP, Mandl RCW, Kahn RS, Pol HEH (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):15915–15926  

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, Goni J, Pol HEH, Kahn RS (2013) Abnormal rich club organization and functional brain dynamics in Schizophrenia. Jama Psychiat 70(8):783–792

    Article  Google Scholar 

  • Walz AD, Doppl K, Kaza E, Roschka S, Platz T, Lotze M (2015) Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behav Brain Res 278:393–403

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30(5):1511–1523

    Article  PubMed  Google Scholar 

  • Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He Y (2011) Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. Plos One 6(7):e21976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Fan Y, Lu M, Li S, Song Z, Peng X, Zhang R, Lin Q, He Y, Wang J, Huang R (2013a) Brain anatomical networks in world class gymnasts: a DTI tractography study. Neuroimage 65:476–487

    Article  PubMed  Google Scholar 

  • Wang JH, Zuo XN, Dai ZJ, Xia MR, Zhao ZL, Zhao XL, Jia JP, Han Y, He Y (2013b) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Bio Psychiatry 73(5):472–481

    Article  CAS  Google Scholar 

  • Wang J, Qiu S, Xu Y, Liu Z, Wen X, Hu X, Zhang R, Li M, Wang W, Huang R (2014) Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin Neurophysiol 125(9):1744–1756

    Article  PubMed  Google Scholar 

  • Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105(3):558–584

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Kansaku K, Hallett M (2004) How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol 91(4):1690–1698

    Article  PubMed  Google Scholar 

  • Yan C, Zang Y (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    Google Scholar 

  • Yao Z, Hu B, Xie Y, Moore P, Zheng J (2015) A review of structural and functional brain networks: small world and atlas. Brain Informatics 2(1):45–52

    Article  PubMed Central  Google Scholar 

  • Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197–1207

    Article  PubMed  Google Scholar 

  • Zanto TP, Gazzaley A (2013) Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 17(12):602–603

    Article  PubMed  Google Scholar 

  • Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G (2011) Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134(Pt 10):2912–2928

    Article  PubMed  Google Scholar 

  • Zuo XN, Xing XX (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav R 45:100–118

    Article  Google Scholar 

  • Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, Breitner JC, Buckner RL, Calhoun VD, Castellanos FX, Chen A, Chen B, Chen J, Chen X, Colcombe SJ, Courtney W, Craddock RC, Di Martino A, Dong HM, Fu X, Gong Q, Gorgolewski KJ, Han Y, He Y, Ho E, Holmes A, Hou XH, Huckins J, Jiang T, Jiang Y, Kelley W, Kelly C, King M, LaConte SM, Lainhart JE, Lei X, Li HJ, Li K, Lin Q, Liu D, Liu J, Liu X, Liu Y, Lu G, Lu J, Luna B, Luo J, Lurie D, Mao Y, Margulies DS, Mayer AR, Meindl T, Meyerand ME, Nan W, Nielsen JA, O’Connor D, Paulsen D, Prabhakaran V, Qi Z, Qiu J, Shao C, Shehzad Z, Tang W, Villringer A, Wang H, Wang K, Wei D, Wei GX, Weng XC, Wu X, Xu T, Yang N, Yang Z, Zang YF, Zhang L, Zhang Q, Zhang Z, Zhao K, Zhen Z, Zhou Y, Zhu XT, Milham MP (2014) An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 1:140049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding from the National Natural Science Foundation of China (Grant numbers: 81071149, 81271548, 81371535, 81428013, and 81471654). The authors express appreciation to Drs. Rhoda E. and Edmund F. Perozzi for editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwang Huang.

Ethics declarations

Competing interest

The authors declare that they have no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lu, M., Fan, Y. et al. Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Struct Funct 221, 3503–3519 (2016). https://doi.org/10.1007/s00429-015-1116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1116-6

Keywords

Navigation