Skip to main content
Log in

Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs’ brain associated with long-term motor skill training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2010) The effect of model order selection in group PICA. Hum Brain Mapp 31:1207–1216

    PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330

    Article  CAS  PubMed  Google Scholar 

  • Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 14:208–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542–548

    Article  CAS  PubMed  Google Scholar 

  • Baldauf D, Desimone R (2014) Neural mechanisms of object-based attention. Science 344:424–427

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MS, LaConte S, Yasar N (2009) Distributed representation of single touches in somatosensory and visual cortex. Hum Brain Mapp 30:3163–3171

    Article  PubMed  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Ricciardi E, Sani L, Gaglianese A, Papasogli A, Ceccarelli R, Franzoni F, Galetta F, Santoro G, Goebel R, Pietrini P (2013) How skill expertise shapes the brain functional architecture: an fMRI study of visuo-spatial and motor processing in professional racing-car and naive drivers. PLoS One 8(10):e77764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunlich K, Seger C (2013) The basal ganglia. Wiley Interdiscip Rev Cogn Sci 4:135–148

    Article  PubMed  Google Scholar 

  • Bray S, Arnold AEGF, Levy RM, Iaria G (2015) Spatial and temporal functional connectivity changes between resting and attentive states. Hum Brain Mapp 36:549–565

    Article  PubMed  Google Scholar 

  • Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11:290–298

    Article  PubMed  Google Scholar 

  • Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  CAS  PubMed  Google Scholar 

  • Callan DE, Naito E (2014) Neural processes distinguishing elite from expert and novice athletes. Cogn Behav Neurol 27:183–188

    Article  PubMed  Google Scholar 

  • Calvert GA, Thesen T (2004) Multisensory integration: methodological approaches and emerging principles in the human brain. J Physiol Paris 98:191–205

    Article  PubMed  Google Scholar 

  • Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 15:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Ide JS, Bowman FD, Simpson HB, Posner J, Steinglass JE (2016) Abnormal reward circuitry in anorexia nervosa: a longitudinal, multimodal MRI study. Hum Brain Mapp 37:3835–3846

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadick JZ, Gazzaley A (2011) Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat Neurosci 14:830–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y et al (2011) Neural correlates of motor imagery for elite archers. NMR Biomed 24:366–372

    PubMed  Google Scholar 

  • Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed  PubMed Central  Google Scholar 

  • Chein JM, Schneider W (2005) Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cogn Brain Res 25:607–623

    Article  Google Scholar 

  • Chen G, Chen G, Xie C, Li S-J (2011) Negative functional connectivity and its dependence on the shortest path length of positive network in the resting-state human brain. Brain Connect 1:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Cropley VL, Scarr E, Fornito A, Klauser P, Bousman CA, Scott R, Cairns MJ, Tooney PA, Pantelis C, Dean B (2015) The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia. Psychiatry Res Neuroimaging 234:182–187

    Article  PubMed  Google Scholar 

  • Damoiseaux J, Rombouts S, Barkhof F, Scheltens P, Stam C, Smith SM, Beckmann C (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bondt T, Smeets D, Pullens P, Van Hecke W, Jacquemyn Y, Parizel PM (2015) Stability of resting state networks in the female brain during hormonal changes and their relation to premenstrual symptoms. Brain Res 1624:275–285

    Article  PubMed  CAS  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    Article  PubMed  Google Scholar 

  • Debarnot U, Sperduti M, Di Rienzo F, Guillot A (2014) Experts bodies, experts minds: how physical and mental training shape the brain. Front Hum Neurosci 8:280

    Article  PubMed  PubMed Central  Google Scholar 

  • DeCarlo LT (1998) Signal detection theory and generalized linear models. Psychol Methods 3:186

    Article  Google Scholar 

  • Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106:10302–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di X, Zhu S, Jin H, Wang P, Ye Z, Zhou K, Zhuo Y, Rao H (2012) Altered resting brain function and structure in professional badminton players. Brain Connect 2:225–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Douw L, Wakeman DG, Tanaka N, Liu HS, Stufflebeam SM (2016) State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience 339:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Lehéricy S, Benali H (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199:61–75

    Article  PubMed  Google Scholar 

  • Egolf EA, Calhoun VD, Kiehl KA (2004) Group ICA of fMRI Toolbox (GIFT). Biol Psychiatry 55:842–849

    Article  Google Scholar 

  • Feinberg DA, Yacoub E (2012) The rapid development of high speed, resolution and precision in fMRI. Neuroimage 62:720–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, Miller AH (2016) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry 21:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 34:1330–1343

    Article  PubMed  Google Scholar 

  • Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22

    PubMed  PubMed Central  Google Scholar 

  • Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc Natl Acad Sci USA 109:12788–12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacosa C, Karpati FJ, Foster NEV, Penhune VB, Hyde KL (2016) Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. Neuroimage 135:273–286

    Article  PubMed  Google Scholar 

  • Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Hanggi J, Koeneke S, Bezzola L, Jancke L (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31:1196–1206

    PubMed  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Haslinger B, Erhard P, Altenmüller E, Hennenlotter A, Schwaiger M, Gräfin von Einsiedel H, Rummeny E, Conrad B, Ceballos-Baumann AO (2004) Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum Brain Mapp 22:206–215

    Article  PubMed  Google Scholar 

  • Hearne L, Cocchi L, Zalesky A, Mattingley JB (2015) Interactions between default mode and control networks as a function of increasing cognitive reasoning complexity. Hum Brain Mapp 36:2719–2731

    Article  PubMed  Google Scholar 

  • Heydrich L, Blanke O (2013) Distinct illusory own-body perceptions caused by damage to posterior insula and extrastriate cortex. Brain 136:790–803

    Article  PubMed  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222

    Article  CAS  PubMed  Google Scholar 

  • Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222

    Article  PubMed  Google Scholar 

  • Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K (2014) Resting states are resting traits—an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One 9:e103492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang R, Lu M, Song Z, Wang J (2015) Long-term intensive training induced brain structural changes in world class gymnasts. Brain Struct Funct 220:625–644

    Article  PubMed  Google Scholar 

  • Huang H, Ding Z, Mao D, Yuan J, Zhu F, Chen S, Xu Y, Lou L, Feng X, Qi L, Qiu W, Zhang H, Zang YF (2016) PreSurgMapp: a MATLAB toolbox for presurgical mapping of eloquent functional areas based on task-related and resting-state functional MRI. Neuroinformatics 14:421–438

    Article  PubMed  Google Scholar 

  • Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39:1666–1681

    Article  PubMed  Google Scholar 

  • Jäncke L, Koeneke S, Hoppe A, Rominger C, Hänggi J (2009) The architecture of the golfer’s brain. PLoS One 4:e4785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kastner S, De Weerd P, Desimone R, Ungerleider LC (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee HM, Kim WJ, Park HJ, Kim SW, Moon DH, Woo M, Tennant LK (2008) Neural correlates of pre-performance routines in expert and novice archers. Neurosci Lett 445:236–241

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Chang Y, Kim J, Seo J, Ryu K, Lee E, Woo M, Janelle CM (2014) An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol 27:173–182

    Article  PubMed  Google Scholar 

  • Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886

    Article  PubMed  Google Scholar 

  • Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human decision-making. Science 318:594–598

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Hu SY, Wang X, Song YY, Liu J (2015) Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being. Neuroimage 107:136–145

    Article  PubMed  Google Scholar 

  • Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31:3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci USA 106:17558–17563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266

    Article  PubMed  Google Scholar 

  • Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012) Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study. PLoS One 7:e32766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Hirose S (2014) Efficient foot motor control by Neymar’s brain. Front Hum Neurosci 8:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano K (2000) Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev 22:5–16

    Article  Google Scholar 

  • Nakata H, Yoshie M, Miura A, Kudo K (2010) Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev 62:197–211

    Article  PubMed  Google Scholar 

  • Nielsen JB, Cohen LG (2008) The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J Physiol 586:65–70

    Article  CAS  PubMed  Google Scholar 

  • Orlov T, Makin TR, Zohary E (2010) Topographic representation of the human body in the occipitotemporal cortex. Neuron 68:586–600

    Article  CAS  PubMed  Google Scholar 

  • Paola M, Caltagirone C, Petrosini L (2013) Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe. Hum Brain Mapp 34:2707–2714

    Article  PubMed  Google Scholar 

  • Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA, Rhyu IJ (2009) Experience-dependent plasticity of cerebellar vermis in basketball players. Cerebellum 8:334

    Article  PubMed  Google Scholar 

  • Park IS, Lee YN, Kwon S, Lee NJ, Rhyu IJ (2015) White matter plasticity in the cerebellum of elite basketball athletes. Anat Cell Biol 48:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel R, Spreng RN, Turner GR (2013) Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabil Neural Repair 27:187–199

    Article  PubMed  Google Scholar 

  • Piccoli T, Valente G, Linden DEJ, Re M, Esposito F, Sack AT, Di Salle F (2015) The default mode network and the working memory network are not anti-correlated during all phases of a working memory task. PLoS One 10(4):e0123354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raichlen DA, Bharadwaj PK, Fitzhugh MC, Haws KA, Torre G-A, Trouard TP, Alexander GE (2016) Differences in resting state functional connectivity between young adult endurance athletes and healthy controls. Front Hum Neurosci 10:610

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice K, Moraczewski D, Redcay E (2016) Perceived live interaction modulates the developing social brain. Soc Cogn Affect Neurosci 11:1354–1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  CAS  PubMed  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirer W, Ryali S, Rykhlevskaia E, Menon V, Greicius M (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–165

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54:875–891

    Article  PubMed  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    Article  CAS  PubMed  Google Scholar 

  • Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44:2189–2208

    Article  PubMed  PubMed Central  Google Scholar 

  • Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P (2011) Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 57:1492–1498

    Article  PubMed  Google Scholar 

  • Walz A, Doppl K, Kaza E, Roschka S, Platz T, Lotze M (2015) Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behav Brain Res 278:393–403

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511–1523

    Article  PubMed  Google Scholar 

  • Wang J-H, Zuo X-N, Gohel S, Milham MP, Biswal BB, He Y (2011) Graph theoretical analysis of functional brain networks: test–retest evaluation on short-and long-term resting-state functional MRI data. PLoS One 6:e21976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Fan Y, Lu M, Li S, Song Z, Peng X, Zhang R, Lin Q, He Y, Wang J (2013a) Brain anatomical networks in world class gymnasts: a DTI tractography study. Neuroimage 65:476–487

    Article  PubMed  Google Scholar 

  • Wang JH, Zuo XN, Dai ZJ, Xia MR, Zhao ZL, Zhao XL, Jia JP, Han Y, He Y (2013b) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol Psychiatry 73:472–481

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu Q, Shen H, Li H, Hu D (2015) Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI. Hum Brain Mapp 36:862–871

    Article  PubMed  Google Scholar 

  • Wang J, Lu M, Fan Y, Wen X, Zhang R, Wang B, Ma Q, Song Z, He Y, Wang J, Huang R (2016) Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Struct Funct 221:3503–3519

    Article  PubMed  Google Scholar 

  • Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77:74–97

    Article  PubMed  Google Scholar 

  • Woldorff MG, Fox PT, Matzke M, Lancaster JL, Veeraswamy S, Zamarripa F, Seabolt M, Glass T, Gao JH, Martin CC, Jerabek P (1997) Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Hum Brain Mapp 5:280–286

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Kansaku K, Hallett M (2004) How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol 91:1690–1698

    Article  PubMed  Google Scholar 

  • Zanto TP, Gazzaley A (2013) Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 17:602–603

    Article  PubMed  Google Scholar 

  • Zhang H, Jia W, Liao W, Zang Y (2013) Automatic component identification method based on normalized sensitivity/specificity measurement. In: Annual meeting of Organization of Hum Brain Mapping (OHBM), Seattle

  • Zuo X-N, Xing X-X (2014) Test–retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118

    Article  PubMed  Google Scholar 

  • Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage 49:2163–2177

    Article  PubMed  Google Scholar 

  • Zuo XN et al (2014) An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 1:140049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China (Grant numbers: 81371535, 81428013, 81471654, and 81271548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, J., Seger, C. et al. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis. Brain Struct Funct 223, 131–144 (2018). https://doi.org/10.1007/s00429-017-1479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1479-y

Keywords

Navigation