Skip to main content
Log in

How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The objective of this study is to explore histological and ultrastructural changes induced by Klingler’s method. Five human brains were prepared. First, the effects of freezing–defrosting on white matter were explored with optical microscopy on corpus callosum samples of two brains; one prepared in accordance with the description of Klingler (1956) and the other without freezing–defrosting. Then, the combined effect of formalin fixation and freezing–defrosting was explored with transmission electron microscopy (EM) on samples of cingulum from one brain: samples from one hemisphere were fixed in paraformaldehyde–glutaraldehyde (para/gluta), other samples from the other hemisphere were fixed in formalin; once fixed, half of the samples were frozen–defrosted. Finally, the effect of dissection was explored from three formalin-fixed brains: one hemisphere of each brain was frozen-defrosted; samples of the corpus callosum were dissected before preparation for scanning EM. Optical microscopy showed enlarged extracellular space on frozen samples. Transmission EM showed no significant alteration of white matter ultrastructure after formalin or para/gluta fixation. Freezing–defrosting created extra-axonal lacunas, larger on formalin-fixed than on para/gluta-fixed samples. In all cases, myelin sheaths were preserved, allowing maintenance of axonal integrity. Scanning EM showed the destruction of most of the extra-axonal structures after freezing–defrosting and the preservation of most of the axons after dissection. Our results are the first to highlight the effects of Klingler’s preparation and dissection on white matter ultrastructure. Preservation of myelinated axons is a strong argument to support the reliability of Klingler’s dissection to explore the structure of human white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153

    Article  CAS  PubMed  Google Scholar 

  • Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52:1374–1389

    Article  PubMed  Google Scholar 

  • Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain J Neurol 132:1210–1220

    Article  Google Scholar 

  • Cragg B (1979) Brain extracellular space fixed for electron microscopy. Neurosci Lett 15:301–306

    Article  CAS  PubMed  Google Scholar 

  • Dammers J, Axer M, Grassel D et al (2010) Signal enhancement in polarized light imaging by means of independent component analysis. NeuroImage 49:1241–1248

    Article  PubMed  Google Scholar 

  • De Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069

    Article  PubMed  Google Scholar 

  • Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff, Paris

    Google Scholar 

  • Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026 (discussion 1026–1028)

    Article  PubMed  Google Scholar 

  • Goergen CJ, Radhakrishnan H, Sakadžić S et al (2012) Optical coherence tractography using intrinsic contrast. Opt Lett 37:3882–3884

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820

    Article  PubMed  Google Scholar 

  • Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  • Kiernan JA (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 1:5

    Google Scholar 

  • Kinoshita M, Shinohara H, Hori O et al (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg 116:323–330

    Article  PubMed  Google Scholar 

  • Klingler J (1935) Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  CAS  PubMed  Google Scholar 

  • Liewald D, Miller R, Logothetis N et al (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X-B, Schumann CM (2014) Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections. Acta Neuropathol Commun 2(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y-B, Franze K, Seifert G et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci 103:17759–17764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas humani cerebri. Karger Publications, New York

    Google Scholar 

  • Magnain C, Augustinack JC, Reuter M et al (2014) Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage 84:524–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado IL, de Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino J, Vergani F, Robles SG, Duffau H (2010) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12

    PubMed  Google Scholar 

  • Martino J, da Silva-Freitas R, Caballero H et al (2013a) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72:87–97 (discussion 97–98)

    PubMed  Google Scholar 

  • Martino J, De Witt Hamer PC, Berger MS et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121

    Article  PubMed  Google Scholar 

  • Nave K-A (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  • Palm C, Axer M, Grassel D et al (2010) Towards ultra-high resolution fibre tract mapping of the human brain—registration of polarised light images and reorientation of fibre vectors. Front Hum Neurosci 4:9

    PubMed  PubMed Central  Google Scholar 

  • Peltier J, Travers N, Destrieux C, Velut S (2006) Optic radiations: a microsurgical anatomical study. J Neurosurg 105:294–300

    Article  PubMed  Google Scholar 

  • Peuskens D, van Loon J, Van Calenbergh F et al (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55:1174–1184

    Article  PubMed  Google Scholar 

  • Poupon C, Rieul B, Kezele I et al (2008) New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn Reson Med 60:1276–1283

    Article  PubMed  Google Scholar 

  • Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Sarubbo S, Benedictis A, Maldonado IL et al (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  • Serres B, Zemmoura I, Andersson F et al (2013) Brain virtual dissection and white matter 3D visualization. Stud Health Technol Inf 184:392–396

    Google Scholar 

  • Shreiber DI, Hao H, Elias RA (2008) Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech Model Mechanobiol 8:311–321

    Article  PubMed  Google Scholar 

  • Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111:16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426 (discussion 426–427)

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Black AJ, Zhu J et al (2011) Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage 58:984–992

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemmoura I, Serres B, Andersson F et al (2014) FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. NeuroImage 103:106–118

    Article  PubMed  Google Scholar 

  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our data were obtained with the assistance of the RIO EM facility of François-Rabelais University. We would like to express our gratitude to the donors involved in the body donation program of the Association des dons du corps du Centre Ouest, Tours, who made this study possible by generously giving their bodies to Science. We thank Christine Hayot and Julien Gaillard for technical assistance with EM sections, and Daniel Bourry for the macrophotography of white matter samples. We are grateful to Philippe Roingeard for his careful reading of the manuscript and helpful comments.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyess Zemmoura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemmoura, I., Blanchard, E., Raynal, PI. et al. How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain Struct Funct 221, 2477–2486 (2016). https://doi.org/10.1007/s00429-015-1050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1050-7

Keywords

Navigation