Skip to main content
Log in

Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The anatomy of the perisylvian component of the superior longitudinal fasciculus (SLF) has recently been reviewed by numerous diffusion tensor imaging tractography (DTI) studies. However, little is known about the exact cortical terminations of this tract. The aim of the present work is to isolate the different subcomponents of this tract with fiber dissection and DTI tractography, and to identify the exact cortical connections. Twelve postmortem human hemispheres (6 right and 6 left) were dissected using the cortex-sparing fiber dissection. In addition, three healthy brains were analyzed using DTI-based tractography software. The different components of the perisylvian SLF were isolated and the fibers were followed until the cortical terminations. Three segments of the perisylvian SLF were identified: (1) anterior segment, connecting the supramarginal gyrus and superior temporal gyrus with the precentral gyrus, (2) posterior segment, connecting the posterior portion of the middle temporal gyrus with the angular gyrus, and (3) long segment of the arcuate fasciculus that connects the middle and inferior temporal gyri with the precentral gyrus and posterior portion of the inferior and middle frontal gyri. In the present study, three different components of the perisylvian SLF were identified. For the first time, our dissections revealed that each component was connected to a specific cortical area within the frontal, parietal and temporal lobes. By accurately depicting not only the trajectory but also cortical connections of this bundle, it is possible to develop new insights into the putative functional role of this tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AF:

Arcuate fasciculus

AG:

Angular gyrus

DTI:

Diffusion tensor imaging

IES:

Intraoperative electrical stimulation

IFG:

Inferior frontal gyrus

ITG:

Inferior temporal gyrus

MFG:

Middle frontal gyrus

PCG:

Precentral gyrus

SF:

Sylvian fissure

SLF:

Superior longitudinal fasciculus

SMG:

Supramarginal gyrus

SPL:

Superior parietal lobe

STG:

Superior temporal gyrus

References

  • Aminoff MJ, Greenberg DA, Simon RP (2005) Clinical neurology. McGraw-Hill, New York

    Google Scholar 

  • Axer H, Beck S, Axer M, Schuchardt F, Heepe J, Flucken A, Axer M, Prescher A, Witte OW (2011) Microstructural analysis of human white matter architecture using polarized light imaging: views from neuroanatomy. Front Neuroinform 5:28

    PubMed  Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839

    Article  PubMed  CAS  Google Scholar 

  • Barrick TR, Lawes IN, Mackay CE, Clark CA (2007) White matter pathway asymmetry underlies functional lateralization. Cereb Cortex 17:591–598

    Article  PubMed  Google Scholar 

  • Bernal B, Altman N (2010) The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging 28:217–225

    Article  PubMed  Google Scholar 

  • Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain 132:2309–2316

    Article  PubMed  Google Scholar 

  • Catani M, de Thiebaut SM (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 129:2093–2107

    Article  Google Scholar 

  • Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Catani M, Allin MP, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Rubino PA, Fernandez-Miranda JC, Abe H, Rhoton AL Jr (2006) Meyer’s loop and the optic radiations in the transylvian approach to the mediobasal temporal lobe. Neurosurgery 59:ONS228–ONS235

    Google Scholar 

  • Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, Richter W, Richter MC, Kastner S, Rushworth MF (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25:8854–8866

    Article  PubMed  CAS  Google Scholar 

  • De Renzi E (1989) Agnosia. Recenti Prog Med 80:633–637

    PubMed  Google Scholar 

  • Dell’acqua F, Scifo P, Rizzo G, Catani M, Simmons A, Scotti G, Fazio F (2010) A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49:1446–1458

    Article  PubMed  Google Scholar 

  • Dronkers NF, Wilkins DP, Van VR Jr, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    Article  PubMed  Google Scholar 

  • Duffau H (2011) The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex (Epub ahead of print)

  • Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125:199–214

    Article  PubMed  Google Scholar 

  • Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, Van ER (2003a) The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 20:1903–1914

    Article  PubMed  Google Scholar 

  • Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L (2003b) The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport 14:2005–2008

    Article  PubMed  Google Scholar 

  • Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, varez-Linera J (2008a) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108:764–774

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC, Rhoton AL Jr, varez-Linera J, Kakizawa Y, Choi C, de Oliveira EP (2008b) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026

    Article  PubMed  Google Scholar 

  • Gharabaghi A, Kunath F, Erb M, Saur R, Heckl S, Tatagiba M, Grodd W, Karnath HO (2009) Perisylvian white matter connectivity in the human right hemisphere. BMC Neurosci 10:15

    Article  PubMed  Google Scholar 

  • Giolli RA, Gregory KM, Suzuki DA, Blanks RH, Lui F, Betelak KF (2001) Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Vis Neurosci 18:725–740

    Article  PubMed  CAS  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482

    Article  PubMed  Google Scholar 

  • Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, Meuli R (2003) DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. Neuroimage 19:545–554

    Article  PubMed  CAS  Google Scholar 

  • Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS (2004) Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage 21:616–622

    Article  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99

    Article  PubMed  Google Scholar 

  • Ingham RJ, Fox PT, Ingham JC, Xiong J, Zamarripa F, Hardies LJ, Lancaster JL (2004) Brain correlates of stuttering and syllable production: gender comparison and replication. J Speech Lang Hear Res 47:321–341

    Article  PubMed  Google Scholar 

  • Kaplan E, Naeser MA, Martin PI, Ho M, Wang Y, Baker E, Pascual-Leone A (2010) Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. Neuroimage 52:436–444

    Article  PubMed  Google Scholar 

  • Kareken DA, Mosnik DM, Doty RL, Dzemidzic M, Hutchins GD (2003) Functional anatomy of human odor sensation, discrimination, and identification in health and aging. Neuropsychology 17:482–495

    Article  PubMed  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004a) Anatomic dissection tractography: a new method for precise MR localization of white matter tracts. AJNR Am J Neuroradiol 25:670–676

    PubMed  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004b) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691

    PubMed  Google Scholar 

  • Klingler J (1935) Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  PubMed  CAS  Google Scholar 

  • Lawes IN, Barrick TR, Murugam AB, Spierings N, Evans DR, Song M, Clarke CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:79

    Article  Google Scholar 

  • Le BD, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  Google Scholar 

  • Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehericy S (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 112:503–511

    Article  PubMed  Google Scholar 

  • Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36

    Article  PubMed  CAS  Google Scholar 

  • Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–461

    Article  PubMed  CAS  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas Cerebri Humani: Der innere Bau des Gehirns dargestellt auf Grund mackroskopischer Präparate. Brown, Boston

    Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo DT-MRI study. Cereb Cortex 15:854–869

    Article  PubMed  Google Scholar 

  • Maldonado IL, Moritz-Gasser S, Duffau H (2011) Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct (In press)

  • Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010a) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699

    Article  PubMed  Google Scholar 

  • Martino J, Vergani F, Robles SG, Duffau H (2010b) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12

    Article  PubMed  Google Scholar 

  • Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vazquez-Barquero A, Garcia-Porrero JA, Duffau H (2011) Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat 219:531–541. doi:10.1111/j.1469-7580.2011.01414.x (Epub ahead of print)

    Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M (2009) Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 62:1–3

    Article  PubMed  CAS  Google Scholar 

  • Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies: a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  • Naeser MA, Alexander MP, Helm-Estabrooks N, Levine HL, Laughlin SA, Geschwind N (1982) Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol 39:2–14

    Article  PubMed  CAS  Google Scholar 

  • Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML (1989) Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain 112(Pt 1):1–38

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springler-Verlag, Berlin

    Google Scholar 

  • Nucifora PG, Ragini Verma CA, Melhem ER, Gur RE, Gur RC (2005) Lefward asymmetry in relative fiber density of the arcuate fasciculus. Neuroreport 16:791–794

    Article  PubMed  Google Scholar 

  • Obler LK, Gjerlow K (1999) Language and the brain. Cambridge University Press, Cambridge

    Google Scholar 

  • Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Georg Thieme Verlag, New York

    Google Scholar 

  • Parker GJ, Luzzi S, Alexander DC, Wheeler-Kingshott CA, Ciccarelli O, Lambon Ralph MA (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666

    Article  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7:e1000170

    Article  PubMed  Google Scholar 

  • Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C (2004) Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery 55:1174–1184

    Article  PubMed  Google Scholar 

  • Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Noppeney U, Koepp MJ, Duncan JS (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 32:388–399

    Article  PubMed  Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197:335–359

    Article  PubMed  Google Scholar 

  • Rhoton AL Jr (2002) The cerebrum. Neurosurgery 51:S1–S51

    PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  PubMed  CAS  Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford UP, New York

    Book  Google Scholar 

  • Schmahmann JD, Rosene DL, Pandya DN (2004) Motor projections to the basis pontis in rhesus monkey. J Comp Neurol 478:248–268

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  • Shuster LI, Lemieux SK (2005) An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain Lang 93:20–31

    Article  PubMed  Google Scholar 

  • Sincoff EH, Tan Y, Abdulrauf SI (2004) White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg 101:739–746

    Article  PubMed  Google Scholar 

  • Soria G, De NM, Tudela R, Blasco G, Puig J, Planas AM, Pedraza S, Prats-Galino A (2011) Improved assessment of ex vivo brainstem neuroanatomy with high-resolution MRI and DTI at 7 Tesla. Anat Rec (Hoboken.) 294:1035–1044

    Article  Google Scholar 

  • Thiebaut de Schotten M, Dell’acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246

    Article  PubMed  CAS  Google Scholar 

  • Tomasi D, Volkow ND (2011) Aging and functional brain networks. Mol Psychiatry Jul 5. doi:10.1038/mp.2011.81

  • Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895

    Article  PubMed  CAS  Google Scholar 

  • Ture U, Yasargil MG, Pait TG (1997) Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery 40:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Ture U, Yasargil DC, Al-Mefty O, Yasargil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733

    Article  PubMed  CAS  Google Scholar 

  • Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426

    Article  PubMed  CAS  Google Scholar 

  • Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1

    Article  PubMed  Google Scholar 

  • Wang F, Sun T, Li X-G, Liu N-J (2008) Diffusion tensor tractography of the temporal stem on the inferior limiting sulcus. J Neurosurg 108:775–781

    Article  PubMed  Google Scholar 

  • Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  • Young P (1997) Basic Clinical Neuroanatomy. Williams and Wilkins, Philadelphia

    Google Scholar 

Download references

Acknowledgments

Juan Martino received specific funding from the 11/18 API Grant entitled “Estudio de la conectividad conectividad cerebral mediante disección de fibras estructural”, “Fundación Marqués de Valdecilla”, IFIMAV, Santander, Cantabria, Spain, 8 October 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Martino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martino, J., De Witt Hamer, P.C., Berger, M.S. et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218, 105–121 (2013). https://doi.org/10.1007/s00429-012-0386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0386-5

Keywords

Navigation