Skip to main content
Log in

Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

A core symptom of post-traumatic stress disorder is hyper-arousal—manifest in part by increases in the amplitude of the acoustic startle reflex. Gewirtz et al. (Prog Neuropsychopharmacol Biol Psychiatry 22:625–648, 1998) found that, in rats, persistent shock-induced startle increases were prevented by pre-test electrolytic lesions of the bed nucleus of the stria terminalis (BNST). We used reversible inactivation to determine if similar effects reflect actions on (a) BNST neurons themselves versus fibers-of-passage, (b) the development versus expression of such increases, and (c) associative fear versus non-associative sensitization. Twenty-four hours after the last of three shock sessions, startle was markedly enhanced when rats were tested in a non-shock context. These increases decayed over the course of several days. Decay was unaffected by context exposure, and elevated startle was restored when rats were tested for the first time in the original shock context. Thus, both associative and non-associative components could be measured under different conditions. Pre-test intra-BNST infusions of the AMPA receptor antagonist NBQX (3 μg/side) blocked the non-associative (as did infusions into the basolateral amygdala) but not the associative component, whereas pre-shock infusions disrupted both. NBQX did not affect baseline startle or shock reactivity. These results indicate that AMPA receptors in or very near to the BNST are critical for the expression and development of non-associative shock-induced startle sensitization, and also for context fear conditioning, but not context fear expression. More generally, they suggest that treatments targeting the BNST may be clinically useful for treating trauma-related hyper-arousal and perhaps for retarding its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamec RE, Burton P, Shallow T, Budgell J (1999) Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle–effective hemisphere depends on the behavior. Physiol Behav 65(4–5):739–751

    CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27(1):1–39

    Article  CAS  PubMed  Google Scholar 

  • Alheid G, De Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, New York, pp 495–578

    Google Scholar 

  • Arluison M, Brochier G, Vankova M, Leviel V, Villalobos J, Tramu G (1994) Demonstration of peptidergic afferents to the bed nucleus of the stria terminalis using local injections of colchicine. A combined immunohistochemical and retrograde tracing study. Brain Res Bull 34:319–337

    Article  CAS  PubMed  Google Scholar 

  • Brownstein M, Saavedra MM, Palkovits M (1974) Norepinephrine and dopamine in the limbic system of the rat. Brain Res 79:431–436

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel AW, Stam R, Wiegant VM (2001) LY354740 attenuates the expression of long-term behavioral sensitization induced by a single session of footshocks. Eur J Pharmacol 426:77–80

    Article  CAS  PubMed  Google Scholar 

  • Christianson JP, Jennings JH, Ragole T, Flyer JG, Benison AM, Barth DS, Watkins LR, Maier SF (2011) Safety signals mitigate the consequences of uncontrollable stress via a circuit involving the sensory insular cortex and bed nucleus of the stria terminalis. Biol Psychiatry 70(5):458–464. doi:10.1016/j.biopsych.2011.04.004

    Article  PubMed Central  PubMed  Google Scholar 

  • Ciccocioppo R, Fedeli A, Economidou D, Policani F, Weiss F, Massi M (2003) The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotropin-releasing factor and for its reversal by nociceptin/orphanin FQ. J Neurosci 23(28):9445–9451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35(1):105–135. doi:10.1038/npp.2009.109

    Article  PubMed Central  PubMed  Google Scholar 

  • de Olmos JS, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877:1–32

    Article  PubMed  Google Scholar 

  • Deyama S, Katayama T, Ohno A, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M (2008) Activation of the ß-adrenoceptor-protein kinase A signaling pathway within the ventral bed nucleus of the stria terminalis mediates the negative affective component of pain in rats. J Neurosci 28(31):7728–7736.

    Google Scholar 

  • Deyama S, Katayama T, Kondoh N, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M (2009) Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats. Behav Brain Res 197(2):279–283. doi:10.1016/j.bbr.2008.08.024

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38(1–2):192–246

    Article  CAS  PubMed  Google Scholar 

  • Fanselow M, LeDoux J (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232

    Article  CAS  PubMed  Google Scholar 

  • Fendt M, Siegl S, Steiniger-Brach B (2005) Noradrenaline transmission within the ventral bed nucleus of the stria terminalis is critical for fear behavior induced by trimethylthiazoline, a component of fox odor. J Neurosci 25(25):5998–6004

    Article  CAS  PubMed  Google Scholar 

  • Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24(15):3810–3815

    Article  CAS  PubMed  Google Scholar 

  • Garrick T, Morrow N, Shalev AY, Eth S (2001) Stress-induced enhancement of auditory startle: an animal model of posttraumatic stress disorder. Psychiatry 64(4):346–354

    CAS  PubMed  Google Scholar 

  • Gewirtz JC, McNish KA, Davis M (1998) Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuropsychopharmacol Biol Psychiatry 22:625–648

    Article  CAS  PubMed  Google Scholar 

  • Goldstein G, van Kammen W, Shelly C, Miller DJ, van Kammen DP (1987) Survivors of imprisonment in the Pacific theater during World War II. Am J Psychiatry 144(9):1210–1213

    CAS  PubMed  Google Scholar 

  • Golub Y, Mauch CP, Dahlhoff M, Wotjak CT (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav Brain Res 205(2):544–549. doi:10.1016/j.bbr.2009.08.019

    Article  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13(3):451–460

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BD, Gabriels LA, Malone DA Jr, Rezai AR, Friehs GM, Okun MS, Shapira NA, Foote KD, Cosyns PR, Kubu CS, Malloy PF, Salloway SP, Giftakis JE, Rise MT, Machado AG, Baker KB, Stypulkowski PH, Goodman WK, Rasmussen SA, Nuttin BJ (2010) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15(1):64–79. doi:10.1038/mp.2008.55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grillon C, Cordova J, Levine LR, Morgan CA 3rd (2003) Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology 168(4):446–454

    Article  CAS  PubMed  Google Scholar 

  • Grueter BA, Winder DG (2005) Group II and III metabotropic glutamate receptors suppress excitatory synaptic transmission in the dorsolateral bed nucleus of the stria terminalis. Neuropsychopharmacology 30(7):1302–1311

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843. doi:10.1016/j.psyneuen.2008.12.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammack SE, Roman CW, Lezak KR, Kocho-Shellenberg M, Grimmig B, Falls WA, Braas K, May V (2010) Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. J Mol Neurosci 42(3):327–340. doi:10.1007/s12031-010-9364-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hazra R, Guo JD, Dabrowska J, Rainnie DG (2012) Differential distribution of serotonin receptor subtypes in BNST(ALG) neurons: modulation by unpredictable shock stress. Neuroscience 225:9–21. doi:10.1016/j.neuroscience.2012.08.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284(2):651–660

    CAS  PubMed  Google Scholar 

  • Hott SC, Gomes FV, Fabri DR, Reis DG, Crestani CC, Correa FM, Resstel LB (2012) Both alpha1- and beta1-adrenoceptors in the bed nucleus of the stria terminalis are involved in the expression of conditioned contextual fear. Br J Pharmacol 167(1):207–221. doi:10.1111/j.1476-5381.2012.01985.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes KC, Shin LM (2011) Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev Neurother 11(2):275–285. doi:10.1586/ern.10.198

    Article  PubMed Central  PubMed  Google Scholar 

  • Ju G, Swanson LW, Simerly RB (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. Chemoarchitecture. J Comp Neurol 280(4):603–621

    Article  CAS  PubMed  Google Scholar 

  • Kamprath K, Wotjak CT (2004) Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem 11:770–786

    Article  PubMed Central  PubMed  Google Scholar 

  • Kilts C, Anderson C (1986) The simultaneous quantification of dopamine, norepinephrine and epinephrine in micropunched rat brain nuclei by on-line trace enrichment HPLC with electro-chemical detection distribution of catecholamines in the limbic system. Neurochem Int 9:437–455

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Davis M (1993) Lack of a temporal gradient of retrograde amnesia in rats with amygdala lesions assessed with the fear-potentiated startle paradigm. Behav Neurosci 107:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Koenigs M, Huey ED, Raymont V, Cheon B, Solomon J, Wassermann EM, Grafman J (2008) Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nat Neurosci 11(2):232–237. doi:10.1038/nn2032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar R (1970) Incubation of fear: experiments of the “Kamin Effect” in rats. J Comp Physiol Psychol 70(2):258–263

    Article  CAS  PubMed  Google Scholar 

  • Leaton RN (1981) Habituation of startle response, lick suppression, and exploratory behavior in rats with hippocampal lesions. J Comp Physiol Psychol 95(5):813–826

    Article  CAS  PubMed  Google Scholar 

  • Lebow M, Neufeld-Cohen A, Kuperman Y, Tsoory M, Gil S, Chen A (2012) Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J Neurosci 32(20):6906–6916. doi:10.1523/JNEUROSCI.4012-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Davis M (1997) Role of the hippocampus, bed nucleus of the stria terminalis and amygdala in the excitatory effect of corticotropin releasing hormone on the acoustic startle reflex. J Neurosci 17:6434–6446

    CAS  PubMed  Google Scholar 

  • Lee Y, Walker D, Davis M (1996) Lack of a temporal gradient of retrograde amnesia following NMDA-induced lesions of the basolateral amygdala assessed with the fear-potentiated startle paradigm. Behav Neurosci 110(4):836–839

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Fitz S, Johnson PL, Shekhar A (2008) Repeated stimulation of CRF receptors in the BNST of rats selectively induces social but not panic-like anxiety. Neuropsychopharmacology 33:2586–2594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luyten L, van Kuyck K, Vansteenwegen D, Nuttin B (2011) Electrolytic lesions of the bed nucleus of the stria terminalis disrupt freezing and startle potentiation in a conditioned context. Behav Brain Res 222(2):357–362. doi:10.1016/j.bbr.2011.03.066

    Article  PubMed  Google Scholar 

  • Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35. doi:10.1016/j.tins.2011.06.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931. doi:10.1146/annurev.neuro.24.1.897

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Aharonov G, Fanselow MS (1996) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav Neurosci 110(4):718–726

    Article  CAS  PubMed  Google Scholar 

  • Marlin NA, Miller RR (1981) Associations to contextual stimuli as a determinant of long-term habituation. J Exp Psychol Anim Behav Process 7(4):313–333

    Article  CAS  PubMed  Google Scholar 

  • Marshall GN, Schell TL, Glynn SM, Shetty V (2006) The role of hyperarousal in the manifestation of posttraumatic psychological distress following injury. J Abnorm Psychol 115(3):624–628. doi:10.1037/0021-843X.115.3.624

    Article  PubMed  Google Scholar 

  • Morilak DA, Cecchi M, Khoshbouei H (2003) Interactions of norepinephrine and galanin in the central amygdala and lateral bed nucleus of the stria terminalis modulate the behavioral response to acute stress. Life Sci 73(6):715–726

    Article  CAS  PubMed  Google Scholar 

  • Muly EC, Mania I, Guo JD, Rainnie DG (2007) Group II metabotropic glutamate receptors in anxiety circuitry: correspondence of physiological response and subcellular distribution. J Comp Neurol 505(6):682–700

    Article  CAS  PubMed  Google Scholar 

  • Pamplona FA, Henes K, Micale V, Mauch CP, Takahashi RN, Wotjak CT (2011) Prolonged fear incubation leads to generalized avoidance behavior in mice. J Psychiatr Res 45(3):354–360. doi:10.1016/j.jpsychires.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  • Pego JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OF, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Pickens CL, Golden SA, Adams-Deutsch T, Nair SG, Shaham Y (2009) Long-lasting incubation of conditioned fear in rats. Biol Psychiatry 65(10):881–886. doi:10.1016/j.biopsych.2008.12.010

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitman RK, Orr SP, Shalev AY (1993) Once bitten, twice shy: beyond the conditioning model of PTSD. Biol Psychiatry 33(3):145–146

    Article  CAS  PubMed  Google Scholar 

  • Poulos AM, Ponnusamy R, Dong HW, Fanselow MS (2010) Compensation in the neural circuitry of fear conditioning awakens learning circuits in the bed nuclei of the stria terminalis. Proc Natl Acad Sci USA 107(33):14881–14886. doi:10.1073/pnas.1005754107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry 60(4):376–382. doi:10.1016/j.biopsych.2006.06.004

    Article  PubMed  Google Scholar 

  • Resstel LB, Alves FH, Reis DG, Crestani CC, Correa FM, Guimaraes FS (2008) Anxiolytic-like effects induced by acute reversible inactivation of the bed nucleus of stria terminalis. Neuroscience 154:869–876

    Article  CAS  PubMed  Google Scholar 

  • Riccio DC, Ackil J, Burch-Vernon A (1992) Forgetting of stimulus attributes: methodological implications for assessing associative phenomena. Psychol Bull 112(3):433–445

    Article  CAS  PubMed  Google Scholar 

  • Sahuque LL, Kullberg EF, McGeehan AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF (2006) Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology 186:122–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santibanez M, Gysling K, Forray MI (2006) Desipramine prevents the sustained increase in corticotropin-releasing hormone-like immunoreactivity induced by repeated immobilization stress in the rat central extended amygdala. J Neurosci Res 84(6):1270–1281

    Article  CAS  PubMed  Google Scholar 

  • Sauerhofer E, Pamplona FA, Bedenk B, Moll GH, Dawirs RR, von Horsten S, Wotjak CT, Golub Y (2012) Generalization of contextual fear depends on associative rather than non-associative memory components. Behav Brain Res 233(2):483–493. doi:10.1016/j.bbr.2012.05.016

    Article  PubMed  Google Scholar 

  • Schell TL, Marshall GN, Jaycox LH (2004) All symptoms are not created equal: the prominent role of hyperarousal in the natural course of posttraumatic psychological distress. J Abnorm Psychol 113(2):189–197

    Article  PubMed  Google Scholar 

  • Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ (2003) LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 6(3):189–197

    Article  CAS  PubMed  Google Scholar 

  • Schreurs BG, Smith-Bell CA, Burhans LB (2011) Incubation of conditioning-specific reflex modification: implications for Post Traumatic Stress Disorder. J Psychiatr Res 45(11):1535–1541. doi:10.1016/j.jpsychires.2011.07.003

    Article  PubMed Central  PubMed  Google Scholar 

  • Schweimer J, Fendt M, Schnitzler HU (2005) Effects of clonidine injections into the bed nucleus of the stria terminalis on fear and anxiety behavior in rats. Eur J Pharmacol 507(1–3):117–124

    Article  CAS  PubMed  Google Scholar 

  • Servatius RJ, Ottenweller JE, Natelson BH (1995) Delayed startle sensitization distinguishes rats exposed to one or three stress sessions: further evidence toward an animal model of PTSD. Biol Psychiatry 38(8):539–546. doi:10.1016/0006-3223(94)00369-E

    Article  CAS  PubMed  Google Scholar 

  • Shalev AY, Ragel-Fuchs Y, Pitman RK (1992) Conditioned fear and psychological trauma. Biol Psychiatry 31(9):863–865

    Article  CAS  PubMed  Google Scholar 

  • Shalev AY, Peri T, Brandes D, Freedman S, Orr SP, Pitman RK (2000) Auditory startle response in trauma survivors with posttraumatic stress disorder: a prospective study. Am J Psychiatry 157(2):255–261

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Inagaki S, Kubota Y, Kito S, Funaki H, Takagi H (1989a) Light and electron microscopic studies of calcitonin gene-related peptide-like immunoreactive terminals in the central nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Exp Brain Res 77(1):217–220

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Inagaki S, Kubota Y, Ogawa N, Shibasaki T, Takagi H (1989b) Coexistence of peptides (corticotropin releasing factor/neurotensin and substance P/somatostatin) in the bed nucleus of the stria terminalis and central amygdaloid nucleus of the rat. Neuroscience 30(2):377–383

    Article  CAS  PubMed  Google Scholar 

  • Siegmund A, Wotjak CT (2007) Hyperarousal does not depend on trauma-related contextual memory in an animal model of Posttraumatic Stress Disorder. Physiol Behav 90(1):103–107. doi:10.1016/j.physbeh.2006.08.032

    Article  CAS  PubMed  Google Scholar 

  • Sink KS, Walker DL, Yang Y, Davis M (2011) Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. J Neurosci 31(5):1802–1810. doi:10.1523/JNEUROSCI.5274-10.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sink KS, Chung A, Ressler KJ, Davis M, Walker DL (2013) Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors. Behav Brain Res 243:286–293. doi:10.1016/j.bbr.2013.01.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stam R (2007a) PTSD and stress sensitisation: a tale of brain and body Part 1: human studies. Neurosci Biobehav Rev 31(4):530–557

    Article  PubMed  Google Scholar 

  • Stam R (2007b) PTSD and stress sensitisation: a tale of brain and body Part 2: animal models. Neurosci Biobehav Rev 31(4):558–584

    Article  PubMed  Google Scholar 

  • Sullivan GM, Apergis J, Bush DE, Johnson LR, Hou M, Ledoux JE (2004) Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in light-enhanced versus fear-potentiated startle. J Neurosci 17:9375–9383

    CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (2002) Quantifying fear potentiated startle using absolute versus percent increase scoring methods: implications for the neurocircuitry of fear and anxiety. Psychopharmacology 164:318–328

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (2005) BNST mediation of long-lasting stress-induced sensitization of the acoustic startle response. Program# 70.8. Neuroscience 2005 Abstracts. Washington, DC: Society for Neuroscience. Online

  • Walker DL, Rattiner LM, Davis M (2002) Group II metabotropic glutamate receptors within the amygdala regulate fear as assessed with potentiated startle in rats. Behav Neurosci 116(6):1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Paschall GY, Davis M (2005) Glutamate receptor antagonist infusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression. Learn Mem 12(2):120–129. doi:10.1101/lm.87105

    Article  PubMed Central  PubMed  Google Scholar 

  • Walker DL, Miles LA, Davis M (2009) Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1291–1308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter A, Mai JK, Lanta L, Gorcs T (1991) Differential distribution of immunohistochemical markers in the bed nucleus of the stria terminalis in the human brain. J Chem Neuroanat 4(4):281–298

    Article  CAS  PubMed  Google Scholar 

  • Woodhams PL, Roberts GW, Polak JM, Crow TJ (1983) Distribution of neuropeptides in the limbic system of the rat: the bed nucleus of the stria terminalis, septum and preoptic area. Neuroscience 8(4):677–703

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Davis M (2004) Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24:10326–10334

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JM, Maren S (2011) The bed nucleus of the stria terminalis is required for the expression of contextual but not auditory freezing in rats with basolateral amygdala lesions. Neurobiol Learn Mem 95(2):199–205. doi:10.1016/j.nlm.2010.11.002

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIMH grants MH 47840 (MD), MH080330 (DW), the National Center for Research Resources P51RR165, and the Office of Research Infrastructure Programs/OD P51OD11132. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors acknowledge the able assistance of Ms. Yong Yang who performed all histological procedures.

Conflict of interest

The authors declare that they have no conflict of interest. Portions of these data have previously appeared in abstract form (Walker and Davis 2005) and in a review article (Walker et al. 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M., Walker, D.L. Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock. Brain Struct Funct 219, 1969–1982 (2014). https://doi.org/10.1007/s00429-013-0616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0616-5

Keywords

Navigation