Skip to main content
Log in

Organization of the procerebrum in terrestrial pulmonates (Helix, Limax) reconsidered: cell mass layer synaptology and its serotonergic input system

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The synaptology of the cell body layer of the olfactory center, procerebrum, was investigated in two prominent terrestrial pulmonate gastropod species, Helix pomatia and Limax valentianus. In addition, the analysis of the 5-HT-immunoreactive innervation, including ultrastructural level, was performed at high resolution in H. pomatia. A highly complex system of synaptic and non-synaptic connections was found in the procerebrum of both species connected to local neuropil areas of different size. The procerebral (globuli) cell perikarya were richly innervated by varicosities meanwhile the axon profiles also established contacts with each other. Synaptic configurations including convergence, divergence and presynaptic modulation were also revealed. The frequent occurrence of unspecialized but close axo-somatic and axo-axonic membrane contacts referring to the modulatory forms of transmitter release were also accompanied by membrane configurations indicative of active exocytosis. In H. pomatia, the cell mass layer was shown to receive a rich 5-HT-immunoreactive innervation, forming a dense network around the cell bodies. At ultrastructural level, 5-HT-immunoreactive varicosities contacted both cell bodies and different unlabeled axon profiles. Our results suggest that the local neuropil regions in the cell body layer are site of local circuits, which may play a decisive role in olfactory integrative processes bound to the procerebrum. The pattern and form of the 5-HT-immunoreactive innervation of extrinsic origin suggest an overall modulatory role in the cell body layer. The results may serve a basis for considering the role of local intercellular events, connected to microcircuits, within the procerebrum cell body layer involved in oscillation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bailey CH, Thompson EB, Castellucci VF, Kandel ER (1979) Ultrastructure of the synapses of sensory neurons that mediate the gill-withdrawal reflex in Aplysia. J Neurocytol 8:415–444

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman and Co., San Francisco

    Google Scholar 

  • Chase R (2000) Structure and function in the cerebral ganglion. Microsc Res Tech 49:511–520

    Article  PubMed  CAS  Google Scholar 

  • Chase R (2002) Behavior and neuronal control in gastropod mollusks. Oxford University Press, New York

    Google Scholar 

  • Cooke IRC, Gelperin A (1988a) Distribution of FMRFamide-like immunoreactivity in the nervous system of the slug Limax maximus. Cell Tissue Res 253:69–76

    PubMed  CAS  Google Scholar 

  • Cooke IRC, Gelperin A (1988b) Distribution of GABA-like immunoreactive neurons in the slug Limax maximus. Cell Tissue Res 253:77–81

    Google Scholar 

  • Elekes K (1978) Ultrastructure of synapses in the central nervous system of lamellibranch molluscs. Acta Biol Hung 29:139–154

    CAS  Google Scholar 

  • Elekes K (1991) Serotonin-immunoreactive varicosities in the cell body layer and neural sheath of the snail, Helix pomatia, ganglia. An electron microscopic immunocytochemical study. Neuroscience 42:583–591

    Article  PubMed  CAS  Google Scholar 

  • Elekes K, Nässel DR (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 262:177–190

    Article  CAS  Google Scholar 

  • Elekes K, Vehovszky Á, Salánki J (1983) Ultrastructure of synaptic connections of a bimodal pacemaker giant neuron in the central nervous system of Helix pomatia L. Neuroscience 8:617–629

    Article  PubMed  CAS  Google Scholar 

  • Elekes K, S-Rózsa K, Vehovszky Á, Hernádi L, Salánki J (1985) Ultrastructural organization of nerve cells and synaptic connections in the intestinal nerve of the snail Helix pomatia L. Cell Tissue Res 239:611–620

    Article  PubMed  CAS  Google Scholar 

  • Elekes K, Kiss T, Fujisawa Y, Hernádi L, Erdélyi L, Muneoka Y (2000) Mytilus inhibitory peptides (MIP) in the central and peripheral nervous system of the pulmonate gastropods Lymnaea stagnalis and Helix pomatia: distribution and physiological actions. Cell Tissue Res 302:115–134

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A (1999) Oscillatory dynamics and information processing in olfactory systems. J Exp Biol 202:1855–1864

    PubMed  Google Scholar 

  • Gelperin A, Tank DW (1990) Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345:437–440

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A, Rhines LD, Flores J, Tank DW (1993) Coherent network oscillations by olfactory interneurons: modulation by endogenous amines. J Neurophysiol 69:1930–1939

    PubMed  CAS  Google Scholar 

  • Glanzman DL (2007) Simple minds: the neurobiology of invertebrate learning and memory. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 347–380

    Google Scholar 

  • Hanström B (1925) Über die sogennanten Intelligenzsphären des Molluskengehirns und die Innervation des Tentakels von Helix. Acta Zool Stockh 6:183–215

    Article  Google Scholar 

  • Hernádi L, Terano Y, Muneoka Y, Kiss T (1995) Distribution of catch-relaxing peptide (CARP)-like immunoreactive neurons in the central and peripheral nervous system of Helix pomatia. Cell Tissue Res 280:335–348

    Article  PubMed  Google Scholar 

  • Ierusamlimsky VN, Balaban PM (2010) Two morphological sub-systems within the olfactory organs of a terrestrial snail. Brain Res 326:68–74

    Article  Google Scholar 

  • Inoue T, Watanabe S, Kirino Y (2001) Serotonin and NO complementarily regulate generation of oscillatory activity in the olfactory CNS of a terrestrial mollusk. J Neurophysiol 85:2634–2638

    PubMed  CAS  Google Scholar 

  • Inoue T, Inokuma Y, Watanabe S, Kirino Y (2004) In vitro study of odor-evoked behavior in a terrestrial mollusk. J Neurophysiol 9:372–381

    Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Watanabe S, Kirino Y, Matsuo R (2006) The procerebrum is necessary for odor-aversion learning in the terrestrial slug Limax valentianus. Learn Mem 13:482–488

    Article  PubMed  Google Scholar 

  • Kimura T, Suzuki H, Kono E, Sekiguchi T (1998) Mapping of interneurons that contribute to food aversive conditioning in the slug brain. Learn Mem 4:376–388

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Delaney KR, Fee MS, Flores JA, Tank DW, Gelperin A (1994) Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. J Neurophysiol 72:1402–1419

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Hattori M, Ito E (2008) The effects of GABA on the network oscillations of the procerebrum in Limax valentianus. Acta Biol Hung 59:77–79

    Google Scholar 

  • Kobayashi S, Hattori M, Elekes K, Ito E, Matsuo R (2010) FMRFamide regulates oscillatory activity of the olfactory center of the slug. Eur J Neurosci 32:1180–1192

    Article  PubMed  Google Scholar 

  • Matsuo R, Ito E (2008) Recovery of learning ability after the ablation of the procerebrum in the terrestrial slug Limax valentianus. Acta Biol Hung 59 (Suppl.): 73–76

    Google Scholar 

  • Matsuo R, Ito E (2009) A novel nitric oxide synthase expressed specifically in the olfactory center. Biochem Biophys Res Commun 386:724–728

    Article  PubMed  CAS  Google Scholar 

  • Matsuo R, Kobayashi S, Watanabe S, Namiki S, Iinuma S, Sakamoto H, Hirose K, Ito E (2009) Glutamatergic neurotransmission in the procerebrum (olfactory center) of a terrestrial mollusk. J Neurosci Res 87:3011–3023

    Google Scholar 

  • Matsuo R, Kobayashi S, Murakami J, Ito E (2010) Spontaneous recovery of the injured olfactory center in the terrestrial slug Limax. PLoS One 5:e9054

    Article  PubMed  Google Scholar 

  • McCarragher G, Chase R (1985) Quantification of ultrastructural symmetry at molluscan chemical synapses. J Neurobiol 16:69–74

    Article  Google Scholar 

  • Nikitin ES, Balaban PM (2000) Optica recording of odor-evoked responses in the olfactory brain of the naïve and aversively trained terrestrial snails. Learn Mem 7:422–432

    Article  PubMed  CAS  Google Scholar 

  • Osborne NN, Cottrell GA (1971) Distribution of biogenic amines in the slug Limax maximus. Z Zellforsch 112:15–30

    Article  PubMed  CAS  Google Scholar 

  • Ratté S, Chase R (1997) Morphology of interneurons in the procerebrum of the snail Helix aspersa. J Comp Neurol 384:359–372

    Article  PubMed  Google Scholar 

  • Ratté S, Chase R (2000) Synapse distribution of olfactory interneurons in the procerebrum of the snail Helix aspersa. J Comp Neurol 417:366–384

    Article  PubMed  Google Scholar 

  • Roubos EW, Moorer-Van Delft CM (1979) Synaptology of the central nervous system of the fresh-water snail Lymnaea stagnalis (L.), with particular reference to neurosecretion. Cell Tissue Res 198:217–235

    Article  PubMed  CAS  Google Scholar 

  • Samarova E, Balaban P (2009) Changes in frequency of spontaneous oscillations in procerebrum correlate to behavioral choice in terrestrial snails. Front. Cell. Neurosci 3:8

    Google Scholar 

  • Schürmann F-W, Geffard M, Elekes K (1989) Dopamine-like immunoreactivity in the bee brain. Cell Tissue Res 256:399–410

    Article  Google Scholar 

  • Shirahata T, Tsunoda M, Santa T, Kirino Y, Watanabe S (2006) Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax valentianus. Learn Mem 13:267–270

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kawahara S, Kirino Y (1998) Morphological characterization of the bursting and nonbursting neurons in the olfactory centre of the terrestrial slug Limax marginatus. J Exp Biol 201:925–930

    PubMed  Google Scholar 

  • Watanabe S, Inoue T, Kirino Y (2003) Contribution of excitatory chloride conductance in the determination of the direction of traveling waves in an olfactory center. J Neurosci 23:2932–2938

    PubMed  CAS  Google Scholar 

  • Zaitseva OV (2000) Structural organization of procerebrums of terrestrial mollusks: characteristics of neuronal pattern, plasticity, and age peculiarities. J Evol Biochem Physiol 3:324–333

    Article  Google Scholar 

  • Zaitseva OV, Ivanova IP, Luk’yanova EL (2000) Ultrastructure of the area of procerebrum cell bodies in snails and slugs. J Evol Biochem Physiol 36:421–431

    Article  Google Scholar 

  • Zs-Nagy I, Sakharov DA (1970) The fine structure of the procerebrum of pulmonate mollusks, Helix and Limax. Tissue Cell 2:399-411

    Google Scholar 

Download references

Acknowledgments

Authors’ thanks are due to the skillful technical assistance of Ms. Zsuzsanna N. Fekete and Mr. Boldizsár Balázs. We are grateful to Dr. Anna Kiss, Dr. József Kiss (both at the Semmelweis University Medical School, Budapest), and Professor László Seress (University of Pécs Medical School, Pécs) providing the possibility to use the Hitachi H-7650 and the JEOL 1200 EXII electron microscopes, respectively. This work was supported by a Grant from the Hungarian Scientific Research Fund (OTKA, No. 78224 to K.E.), and Grants-in-Aid for KAKENHI from the Japan Society for the Promotion of Science (No. 21657022 to E.I., and No. 23570099 to S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Elekes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elekes, K., Battonyai, I., Kobayashi, S. et al. Organization of the procerebrum in terrestrial pulmonates (Helix, Limax) reconsidered: cell mass layer synaptology and its serotonergic input system. Brain Struct Funct 218, 477–490 (2013). https://doi.org/10.1007/s00429-012-0409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0409-2

Keywords

Navigation