Skip to main content

Advertisement

Log in

Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species—the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)—and two afrotherian species—the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II–III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alcantara S, Ferrer I (1994) Postnatal development of parvalbumin immunoreactivity in the cerebral cortex of the cat. J Comp Neurol 348:133–149. doi:10.1002/cne.903480108

    Article  PubMed  CAS  Google Scholar 

  • Alcantara S, Ferrer I (1995) Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat. Anat Embryol (Berl) 192:369–384. doi:10.1007/BF00710106

    Article  CAS  Google Scholar 

  • Allman J (1990) Evolution of neocortex. In: Jones EG, Peters A (eds) Cerebral cortex. Plenum Press, New York, pp 269–283

    Google Scholar 

  • Alpar A, Seeger G, Hartig W, Arendt T, Gartner U (2004) Adaptive morphological changes of neocortical interneurons in response to enlarged and more complex pyramidal cells in p21H-Ras(Val12) transgenic mice. Brain Res Bull 62:335–343. doi:10.1016/j.brainresbull.2003.10.007

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Mione M, Yun K, Rubenstein JL (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654. doi:10.1093/cercor/9.6.646

    Article  PubMed  CAS  Google Scholar 

  • Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208. doi:10.1007/BF00318606

    Article  PubMed  CAS  Google Scholar 

  • Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568. doi:10.1038/nrn2402

    Article  PubMed  CAS  Google Scholar 

  • Asher RJ, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14. doi:10.1186/1741-7007-6-14

    Article  PubMed  Google Scholar 

  • Ashwell KW, Zhang LL, Marotte LR (2005) Cyto- and chemoarchitecture of the cortex of the tammar wallaby (Macropus eugenii): areal organization. Brain Behav Evol 66:114–136. doi:10.1159/000086230

    Article  PubMed  CAS  Google Scholar 

  • Baldauf ZB (2005) SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 383:109–114. doi:10.1016/j.neulet.2005.03.055

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros-Yañez I, Munoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, DeFelipe J (2005) Double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 486:344–360. doi:10.1002/cne.20533

    Article  Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1990) Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432. doi:10.1002/cne.903010307

    Article  PubMed  Google Scholar 

  • Boire D, Desgent S, Matteau I, Ptito M (2005) Regional analysis of neurofilament protein immunoreactivity in the hamster’s cortex. J Chem Neuroanat 29:193–208. doi:10.1016/j.jchemneu.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Bourne JA, Warner CE, Rosa MG (2005) Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry. Cereb Cortex 15:740–748. doi:10.1093/cercor/bhh175

    Article  PubMed  Google Scholar 

  • Bourne JA, Warner CE, Upton DJ, Rosa MG (2007) Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 500:832–849. doi:10.1002/cne.21190

    Article  PubMed  CAS  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 12:2425–2451. doi:10.1046/j.1460-9568.2000.00142.x

    Article  PubMed  CAS  Google Scholar 

  • Bueno-Lopez JL, Reblet C, Lopez-Medina A, Gomez-Urquijo SM, Grandes P, Gondra J et al (1991) Targets and laminar distribution of projection neurons with ‘inverted’ morphology in rabbit cortex. Eur J Neurosci 3:415–430. doi:10.1111/j.1460-9568.1991.tb00829.x

    Article  PubMed  Google Scholar 

  • Bullock TH (1984) Understanding brains by comparing taxa. Perspect Biol Med 27:510–524

    PubMed  CAS  Google Scholar 

  • Bush EC, Allman JM (2004) The scaling of frontal cortex in primates and carnivores. Proc Natl Acad Sci USA 101:3962–3966. doi:10.1073/pnas.0305760101

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193. doi:10.1016/j.tins.2004.02.007

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205. doi:10.1002/cne.902820204

    Article  PubMed  CAS  Google Scholar 

  • Carter AM, Blankenship TN, Enders AC, Vogel P (2006) The fetal membranes of the otter shrews and a synapomorphy for Afrotheria. Placenta 27:258–268. doi:10.1016/j.placenta.2005.02.019

    Article  PubMed  CAS  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475. doi:10.1016/0306-4522(90)90091-H

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Matsubara JA, Cynader MS (1996) Differential expression of neurofilament protein in the visual system of the vervet monkey. Brain Res 709:17–26. doi:10.1016/0006-8993(95)01217-6

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury SA, Rasmusson DD (2002) Comparison of receptive field expansion produced by GABA(B) and GABA(A) receptor antagonists in raccoon primary somatosensory cortex. Exp Brain Res 144:114–121. doi:10.1007/s00221-002-1035-7

    Article  PubMed  CAS  Google Scholar 

  • Clemo HR, Keniston L, Meredith MA (2003) A comparison of the distribution of GABA-ergic neurons in cortices representing different sensory modalities. J Chem Neuroanat 26:51–63. doi:10.1016/S0891-0618(03)00039-5

    Article  PubMed  CAS  Google Scholar 

  • Colombo JA (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats. Acta Anat (Basel) 155:57–62. doi:10.1159/000147790

    Article  CAS  Google Scholar 

  • Colombo JA, Hartig W, Lipina S, Bons N (1998) Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anat Embryol (Berl) 197:369–376. doi:10.1007/s004290050147

    Article  CAS  Google Scholar 

  • Colombo JA, Fuchs E, Hartig W, Marotte LR, Puissant V (2000) “Rodent-like” and “primate-like” types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study. Anat Embryol (Berl) 201:111–120. doi:10.1007/PL00008231

    Article  CAS  Google Scholar 

  • Colombo JA, Sherwood CC, Hof PR (2004) Interlaminar astroglial processes in the cerebral cortex of great apes. Anat Embryol (Berl) 208:215–218. doi:10.1007/s00429-004-0391-4

    Google Scholar 

  • Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341:95–116. doi:10.1002/cne.903410109

    Article  PubMed  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180. doi:10.1038/nn799

    Article  PubMed  CAS  Google Scholar 

  • Cozzi B, Spagnoli S, Bruno L (2001) An overview of the central nervous system of the elephant through a critical appraisal of the literature published in the XIX and XX centuries. Brain Res Bull 54:219–227. doi:10.1016/S0361-9230(00)00456-1

    Article  PubMed  CAS  Google Scholar 

  • Cruikshank SJ, Killackey HP, Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569. doi:10.1016/S0306-4522(01)00226-3

    Article  PubMed  CAS  Google Scholar 

  • Dann JF, Buhl EH (1995) Patterns of connectivity in the neocortex of the echidna (Tachyglossus aculeatus). Cereb Cortex 5:363–373. doi:10.1093/cercor/5.4.363

    Article  PubMed  CAS  Google Scholar 

  • De Moraes JL, Vieira FL, Lopes SM (1963) Evoked auditory potentials in the sloth cortex. Arq Neuropsiquiatr 21:271–278

    Google Scholar 

  • DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289. doi:10.1093/cercor/3.4.273

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28 k, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19. doi:10.1016/S0891-0618(97)10013-8

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Gonzalez-Albo MC (1998) Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex. Neuroreport 9:467–470. doi:10.1097/00001756-199802160-00020

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Jones EG (1985) Vertical organization of gamma-aminobutyric acid-accumulating instrinsic neuronal systems in monkey cerebral cortex. J Neurosci 5:3246–3260

    PubMed  CAS  Google Scholar 

  • DeFelipe J, Jones EG (1991) Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations. Brain Res 562:39–47. doi:10.1016/0006-8993(91)91184-3

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Hendry SH, Jones EG (1989a) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54. doi:10.1016/0006-8993(89)91702-2

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Hendry SH, Jones EG (1989b) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86:2093–2097. doi:10.1073/pnas.86.6.2093

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Hendry SH, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673. doi:10.1016/0306-4522(90)90097-N

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316. doi:10.1023/A:1024130211265

    Article  PubMed  Google Scholar 

  • del Rio MR, DeFelipe J (1996) Colocalization of calbindin D-28 k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol 369:472–482. doi:10.1002/(SICI)1096-9861(19960603)369:3<472::AID-CNE11>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  • del Rio MR, DeFelipe J (1997) Colocalization of parvalbumin and calbindin D-28 k in neurons including chandelier cells of the human temporal neocortex. J Chem Neuroanat 12:165–173. doi:10.1016/S0891-0618(96)00191-3

    Article  PubMed  CAS  Google Scholar 

  • Dengler-Crish CM, Crish SD, O’Riain MJ, Catania KC (2006) Organization of the somatosensory cortex in elephant shrews (E. edwardii). Anat Rec 288A:859–866. doi:10.1002/ar.a.20357

    Article  Google Scholar 

  • Desgent S, Boire D, Ptito M (2005) Distribution of calcium binding proteins in visual and auditory cortices of hamsters. Exp Brain Res 163:159–172. doi:10.1007/s00221-004-2151-3

    Article  PubMed  CAS  Google Scholar 

  • Dhar P, Mehra RD, Sidharthan V, Sharma K (2001) Parvalbumin and calbindin D-28 K immunoreactive neurons in area MT of rhesus monkey. Exp Brain Res 137:141–149. doi:10.1007/s002210000631

    Article  PubMed  CAS  Google Scholar 

  • Dom R, Martin GF, Fisher BL, Fisher AM, Harting JK (1971) The motor cortex and corticospinal tract of the armadillo (Dasypus novemcinctus). J Neurol Sci 14:225–236. doi:10.1016/0022-510X(71)90092-X

    Article  PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. doi:10.1146/annurev.neuro.27.070203.144152

    Article  PubMed  CAS  Google Scholar 

  • Erickson SL, Lewis DA (2002) Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J Comp Neurol 448:186–202. doi:10.1002/cne.10249

    Article  PubMed  CAS  Google Scholar 

  • Fairén A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons: general account. In: Peters A, Jones EG (eds) Cerebral cortex 1, cellular components of the cerebral cortex. Plenum, New York, pp 210–253

    Google Scholar 

  • Fairén A, Valverde F (1980) A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J Comp Neurol 194:761–779. doi:10.1002/cne.901940405

    Article  PubMed  Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex. Cellular components of the cerebral cortex, vol 1. Plenum, New York, pp 123–200

  • Ferrari CC, Aldana Marcos HJ, Carmanchahi PD, Benitez I, Affanni JM (1998) The brain of the armadillo Dasypus hybridus. A general view of its most salient features. Biocell 22:123–140

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Hall JC (1996) Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol 76:1059–1073

    PubMed  CAS  Google Scholar 

  • Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364:609–636. doi:10.1002/(SICI)1096-9861(19960122)364:4<609::AID-CNE2>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499. doi:10.1002/(SICI)1096-9861(19970127)377:4<465::AID-CNE1>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    PubMed  CAS  Google Scholar 

  • Gao WJ, Wormington AB, Newman DE, Pallas SL (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J Comp Neurol 422:140–157. doi:10.1002/(SICI)1096-9861(20000619)422:1<140::AID-CNE9>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Garey LJ, Winkelmann E, Brauer K (1985) Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305–321. doi:10.1002/cne.902400307

    Article  PubMed  CAS  Google Scholar 

  • Gerebtzoff MA, Goffart M (1966) Cytoarchitectonic study of the isocortex in the sloth (Choloepus hoffmanni Peters). J Comp Neurol 126:523–533

    PubMed  CAS  Google Scholar 

  • Glezer II, Morgane PJ (1990) Ultrastructure of synapses and golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Brain Res Bull 24:401–427. doi:10.1016/0361-9230(90)90096-I

    Article  PubMed  CAS  Google Scholar 

  • Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181–188. doi:10.1016/0006-8993(92)91047-I

    Article  PubMed  CAS  Google Scholar 

  • Glezer II, Hof PR, Leranth C, Morgane PJ (1993) Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249–272. doi:10.1093/cercor/3.3.249

    Article  PubMed  CAS  Google Scholar 

  • Glezer II, Hof PR, Morgane PJ (1998) Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 15:203–237. doi:10.1016/S0891-0618(98)00022-2

    Article  PubMed  CAS  Google Scholar 

  • Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347–358. doi:10.1093/cercor/7.4.347

    Article  PubMed  CAS  Google Scholar 

  • Gonchar Y, Burkhalter A (1999) Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cereb Cortex 9:683–696. doi:10.1093/cercor/9.7.683

    Article  PubMed  CAS  Google Scholar 

  • Goodchild AK, Martin PR (1998) The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 15:625–642. doi:10.1017/S0952523898154044

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJ (1988) The nucleator. J Microsc 151:3–21

    PubMed  CAS  Google Scholar 

  • Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2008) Von Economo neurons in the elephant brain. Anat Rec (in press)

  • Hardwick C, French SJ, Southam E, Totterdell S (2005) A comparison of possible markers for chandelier cartridges in rat medial prefrontal cortex and hippocampus. Brain Res 1031:238–244. doi:10.1016/j.brainres.2004.10.047

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23:6315–6326

    PubMed  CAS  Google Scholar 

  • Hassiotis M, Ashwell KW (2003) Neuronal classes in the isocortex of a monotreme, the Australian echidna (Tachyglossus aculeatus). Brain Behav Evol 61:6–27. doi:10.1159/000068877

    Article  PubMed  CAS  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KW (2003) The anatomy of the cerebral cortex of the echidna (Tachyglossus aculeatus). Comp Biochem Physiol A Mol Integr Physiol 136:827–850. doi:10.1016/S1095-6433(03)00166-1

    Article  PubMed  CAS  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KW (2004) Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 475:493–517. doi:10.1002/cne.20193

    Article  PubMed  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KW (2005) Cyto- and chemoarchitecture of the cerebral cortex of an echidna (Tachyglossus aculeatus). II. Laminar organization and synaptic density. J Comp Neurol 482:94–122. doi:10.1002/cne.20353

    Article  PubMed  Google Scholar 

  • Hendry SH, Carder RK (1993) Neurochemical compartmentation of monkey and human visual cortex: similarities and variations in calbindin immunoreactivity across species. Vis Neurosci 10:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins. Brain Res 543:45–55. doi:10.1016/0006-8993(91)91046-4

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Schwark HD, Jones EG, Yan J (1987) Number and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519

    PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lowson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76:467–472. doi:10.1007/BF00247904

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301. doi:10.1016/0014-4886(91)90096-U

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186. doi:10.1002/cne.903520202

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287A:1153–1163. doi:10.1002/ar.a.20252

    Article  CAS  Google Scholar 

  • Hof PR, Van der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1–31. doi:10.1002/ar.20407

    Article  Google Scholar 

  • Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992) The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146:91–95. doi:10.1016/0304-3940(92)90180-F

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Nimchinsky EA, Morrison JH (1995) Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol 362:109–133. doi:10.1002/cne.903620107

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Bogaert YE, Rosenthal RE, Fiskum G (1996a) Distribution of neuronal populations containing neurofilament protein and calcium-binding proteins in the canine neocortex: regional analysis and cell typology. J Chem Neuroanat 11:81–98. doi:10.1016/0891-0618(96)00126-3

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Rosenthal RE, Fiskum G (1996b) Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus. J Chem Neuroanat 11:1–12. doi:10.1016/0891-0618(96)00117-2

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA et al (1996c) Neurofilament protein is differentially distributed in subpopulations of corticortical projectiion neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127. doi:10.1002/(SICI)1096-9861(19961202)376:1<112::AID-CNE7>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA et al (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116. doi:10.1016/S0891-0618(98)00065-9

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300–310. doi:10.1159/000006665

    Article  PubMed  CAS  Google Scholar 

  • Hogan D, Berman NE (1994) The development of parvalbumin and calbindin-D28 k immunoreactive interneurons in kitten visual cortical areas. Brain Res Dev Brain Res 77:1–21. doi:10.1016/0165-3806(94)90209-7

    Article  PubMed  CAS  Google Scholar 

  • Ichida JM, Rosa MG, Casagrande VA (2000) Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of Pteropus poliocephalus. J Comp Neurol 417:73–87. doi:10.1002/(SICI)1096-9861(20000131)417:1<73::AID-CNE6>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  • Inda MC, DeFelipe J, Muñoz A (2008) Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. Cereb Cortex. doi:10.1093/cercor/bhn1057

  • Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–947. doi:10.1126/science.2000496

    Article  PubMed  CAS  Google Scholar 

  • Johnson JI, Kirsch JA, Switzer RCd (1984) Brain traits through phylogeny: evolution of neural characters. Brain Behav Evol 24:169–176. doi:10.1159/000121314

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (2006) Evolution of the neocortex. Curr Biol 16:R910–R914. doi:10.1016/j.cub.2006.09.057

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486. doi:10.1093/cercor/7.6.476

    Article  PubMed  CAS  Google Scholar 

  • Kirkcaldie MT, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC (2002) Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 24:163–171. doi:10.1016/S0891-0618(02)00043-1

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Tanaka K, Hashikawa T, Jones EG (1999) Neurochemical gradients along monkey sensory cortical pathways: calbindin-immunoreactive pyramidal neurons in layers II and III. Eur J Neurosci 11:4197–4203. doi:10.1046/j.1460-9568.1999.00844.x

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Heizmann CW, Tateishi K, Hamaoka Y, Hama K (1987) An aspect of the organizational principle of the gamma-aminobutyric acidergic system in the cerebral cortex. Brain Res 409:403–408. doi:10.1016/0006-8993(87)90732-3

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer L, Kunzle H, Kaas J (1997) Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). J Comp Neurol 379:399–414. doi:10.1002/(SICI)1096-9861(19970317)379:3<399::AID-CNE6>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649:159–173. doi:10.1016/0006-8993(94)91060-X

    Article  PubMed  CAS  Google Scholar 

  • Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63

    PubMed  CAS  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497. doi:10.1016/S0960-9822(03)00135-0

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Lund JS (1990) Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations. J Comp Neurol 293:599–615. doi:10.1002/cne.902930406

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Cruz DA, Melchitzky DS, Pierri JN (2001) Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 158:1411–1422. doi:10.1176/appi.ajp.158.9.1411

    Article  PubMed  CAS  Google Scholar 

  • Li CX, Callaway JC, Waters RS (2002) Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation. Exp Brain Res 145:411–428. doi:10.1007/s00221-002-1124-7

    Article  PubMed  CAS  Google Scholar 

  • Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312. doi:10.1002/cne.903280209

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2005) Mesquite: A modular system for evolutionary analysis. Version 1.06. http://mesquiteproject.org

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807. doi:10.1038/nrn1519

    Article  PubMed  CAS  Google Scholar 

  • Marshall CD, Reep RL (1995) Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Brain Behav Evol 45:1–18. doi:10.1159/000113381

    Article  PubMed  CAS  Google Scholar 

  • Mendizabal-Zubiaga JL, Reblet C, Bueno-Lopez JL (2007) The underside of the cerebral cortex: layer V/VI spiny inverted neurons. J Anat 211:223–236. doi:10.1111/j.1469-7580.2007.00779.x

    Article  PubMed  Google Scholar 

  • Meulders M, Gybels J, Bergmans J, Gerebtzoff MA, Goffart M (1966) Sensory projections of somatic, auditory and visual origin to the cerebral cortex of the sloth (Choloepus hoffmanni Peters). J Comp Neurol 126:535–546

    PubMed  CAS  Google Scholar 

  • Morris JR, Lasek RJ (1982) Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol 92:192–198. doi:10.1083/jcb.92.1.192

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722. doi:10.1093/brain/120.4.701

    Article  PubMed  Google Scholar 

  • Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421. doi:10.1101/gr.5918807

    Article  PubMed  CAS  Google Scholar 

  • Nelson SB, Sugino K, Hempel CM (2006) The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci 29:339–345. doi:10.1016/j.tins.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1997) Neurofilament protein and calcium-binding proteins in the human cingulate cortex. J Comp Neurol 384:597–620. doi:10.1002/(SICI)1096-9861(19970811)384:4<597::AID-CNE8>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96:5268–5273. doi:10.1073/pnas.96.9.5268

    Article  PubMed  CAS  Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442. doi:10.1016/S0022-5193(05)80637-X

    Article  Google Scholar 

  • Park HJ, Lee SN, Lim HR, Kong JH, Jeon CJ (2000) Calcium-binding proteins calbindin D28K, calretinin, and parvalbumin immunoreactivity in the rabbit visual cortex. Mol Cells 10:206–212

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, Lieberman AR, Webster KE (1977) Organization of neurons in the visual cortex, area 17, of the rat. J Anat 124:305–322

    PubMed  CAS  Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson CRR (1999) Chemoarchitectonic Atlas of the rat forebrain. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam

    Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255. doi:10.1002/(SICI)1096-9861(19960205)365:2<232::AID-CNE3>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Sethares C (1997) The organization of double bouquet cells in monkey striate cortex. J Neurocytol 26:779–797. doi:10.1023/A:1018518515982

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Proskauer CC, Ribak CE (1982) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416. doi:10.1002/cne.902060408

    Article  PubMed  CAS  Google Scholar 

  • Povysheva NV, Zaitsev AV, Kroner S, Krimer OA, Rotaru DC, Gonzalez-Burgos G et al (2007) Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J Neurophysiol 97:1030–1039. doi:10.1152/jn.00794.2006

    Article  PubMed  CAS  Google Scholar 

  • Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol. doi:10.1152/jn.90396.92008

  • Preuss TM (2000) Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav Evol 55:287–299. doi:10.1159/000006664

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691. doi:10.1093/cercor/12.7.671

    Article  PubMed  Google Scholar 

  • Preuss TM, Stepniewska I, Jain N, Kaas JH (1997) Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32. Brain Res 767:148–153. doi:10.1016/S0006-8993(97)00704-X

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Jain N, Preuss TM, Kaas JH (1999) Inverted pyramidal neurons in chimpanzee sensorimotor cortex are revealed by immunostaining with monoclonal antibody SMI-32. Somatosens Mot Res 16:49–56. doi:10.1080/08990229970645

    Article  PubMed  CAS  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    PubMed  CAS  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    PubMed  CAS  Google Scholar 

  • Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365–386. doi:10.1159/000116523

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Hess A, Scheich H (1999) Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex. Brain Res 831:184–199. doi:10.1016/S0006-8993(99)01440-7

    Article  PubMed  CAS  Google Scholar 

  • Royce GJ, Martin GF, Dom RM (1975) Functional localization and cortical architecture in the nine-banded armadillo (Dasypus novemcinctus mexicanus). J Comp Neurol 164:495–521. doi:10.1002/cne.901640408

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Villagra MR, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy of afrotherian mammals. Syst Biodivers 5:1–7. doi:10.1017/S1477200006002258

    Article  Google Scholar 

  • Sanides F, Sanides D (1974) The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwicklungsgesch 136:272–293. doi:10.1007/BF00522616

    Article  Google Scholar 

  • Saraiva PE, Magalhães-Castro B (1975) Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus). Brain Res 90:181–193. doi:10.1016/0006-8993(75)90300-5

    Article  PubMed  CAS  Google Scholar 

  • Sarko DK, Reep RL (2007) Somatosensory areas of manatee cerebral cortex: histochemical characterization and functional implications. Brain Behav Evol 69:20–36. doi:10.1159/000095028

    Article  PubMed  CAS  Google Scholar 

  • Schmolke C, Künzle H (1997) On the presence of dendrite bundles in the cerebral cortex of the Madagascan lesser hedgehog tenrec and the red-eared pond turtle. Anat Embryol (Berl) 196:195–213. doi:10.1007/s004290050091

    Article  CAS  Google Scholar 

  • Schwark HD, Li J (2000) Distribution of neurons immunoreactive for calcium-binding proteins varies across areas of cat primary somatosensory cortex. Brain Res Bull 51:379–385. doi:10.1016/S0361-9230(99)00250-6

    Article  PubMed  CAS  Google Scholar 

  • Seiffert ER (2007) A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol Biol 7:224. doi:10.1186/1471-2148-7-224

    Article  PubMed  CAS  Google Scholar 

  • Sherwood CC, Hof PR (2007) The evolution of neuron types and cortical histology in apes and humans. In: Preuss TM, Kaas JH (eds) The evolution of primate nervous systems evolution of nervous systems, vol 4. Academic Press, Oxford, pp 355–378

  • Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR (2003) Variability of Broca’s area homologue in African great apes: implications for language evolution. Anat Rec 271A:276–285. doi:10.1002/ar.a.10046

    Article  Google Scholar 

  • Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in Old World monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63:82–106. doi:10.1159/000075673

    Article  PubMed  Google Scholar 

  • Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM et al (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195. doi:10.1159/000096986

    Article  PubMed  Google Scholar 

  • Silberberg G, Gupta A, Markram H (2002) Stereotypy in neocortical microcircuits. Trends Neurosci 25:227–230. doi:10.1016/S0166-2236(02)02151-3

    Article  PubMed  CAS  Google Scholar 

  • Sillito AM, Kemp JA, Patel H (1980) Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res 41:1–10. doi:10.1007/BF00236673

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566. doi:10.1002/cne.901950402

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149. doi:10.1016/0006-8993(85)90397-X

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135. doi:10.1016/S0165-0173(97)00061-1

    Article  PubMed  CAS  Google Scholar 

  • Spatz WB, Illing RB, Weisenhorn DM (1994) Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus. J Comp Neurol 339:519–534. doi:10.1002/cne.903390405

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Inc. Publishers, Sunderland

    Google Scholar 

  • Toledo-Rodriguez M, Goodman P, Illic M, Wu C, Markram H (2005) Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol 567:401–413. doi:10.1113/jphysiol.2005.089250

    Article  PubMed  CAS  Google Scholar 

  • Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000) Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res 861:45–58. doi:10.1016/S0006-8993(00)01954-5

    Article  PubMed  CAS  Google Scholar 

  • Tyler CJ, Dunlop SA, Lund RD, Harman AM, Dann JF, Beazley LD et al (1998) Anatomical comparison of the macaque and marsupial visual cortex: common features that may reflect retention of essential cortical elements. J Comp Neurol 400:449–468. doi:10.1002/(SICI)1096-9861(19981102)400:4<449::AID-CNE2>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  • Van Brederode JF, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 44:157–171. doi:10.1016/0306-4522(91)90258-P

    Article  PubMed  Google Scholar 

  • Van Brederode JF, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22. doi:10.1002/cne.902980102

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Vandesande F, Arckens L (2001) Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 441:345–368. doi:10.1002/cne.1416

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288A:753–775. doi:10.1002/ar.a.20350

    Article  Google Scholar 

  • Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819. doi:10.1093/cercor/bhm012

    Article  PubMed  Google Scholar 

  • Vizcaíno SF, Loughry WJ (2008) The biology of the Xenarthra. University Press of Florida, Gainesville

    Google Scholar 

  • Wang J, Caspary D, Salvi RJ (2000) GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport 11:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003–1006. doi:10.1038/nature05854

    Article  PubMed  CAS  Google Scholar 

  • Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S et al (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395–14400. doi:10.1073/pnas.0704342104

    Article  PubMed  CAS  Google Scholar 

  • Williams SM, Goldman-Rakic PS, Leranth C (1992) The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. J Comp Neurol 320:353–369. doi:10.1002/cne.903200307

    Article  PubMed  CAS  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696. doi:10.1038/nrn1954

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 95:5341–5346. doi:10.1073/pnas.95.9.5341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chad Lennon and Amy Garrison for technical assistance and Dr. Mary Ann Raghanti for helpful discussion. This work was supported by the National Science Foundation (BCS-0515484, BCS-0549117, and BCS-0453005) and the James S. McDonnell Foundation (22002078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chet C. Sherwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherwood, C.C., Stimpson, C.D., Butti, C. et al. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213, 301–328 (2009). https://doi.org/10.1007/s00429-008-0198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0198-9

Keywords

Navigation