Skip to main content
Log in

Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

To learn about maturational patterns of nonpyramidal neurons in the cerebral cortex, calbindin-D28k immunoreactivity was studied in the kitten cortex. Immunoreactive neurons first appear in the cortical and subcortical areas related to the limbic system, including the cingulate and retrosplenial cortices, and in the secondary motor areas. These are followed by the primary motor and sensory association areas and, finally, by the primary sensory areas. In all cortical areas, calbindin-D28k immunoreactivity first develops in layer V pyramidal neurons and later in nonpyramidal neurons, except in the primary sensory areas, where immunoreactive pyramidal neurons are not found at any age. Transient calbindin-D28k immunoreactivity occurs in pyramidal neurons that are mainly localized in the cingulate and retrosplenial cortices and in the secondary motor area, as well as in nonpyramidal neurons localized in the subplate and layer I, and in a subset of large multipolar and bitufted neurons in layer VI. Nonpyramidal neurons localized in layers II to IV, and some neurons in layer VI, develop permanent calbindin-D28k immunoreactivity. Calbindin-D28k immunoreactivity labels subsets of GABAergic interneurons that form vertical axonal tufts, so that temporal and regional patterns of calbindin-D28k immunoreactivity during development may be implicated in the maturation of columnar (vertical) inhibition in the cerebral cortex. In addition to neurons, corticofugal and afferent fibres of subcortical origin exhibit calbindin-D28k immunoreactivity. Transient calbindin-D28k immunoreactivity occurs in corticofugal fibres arising from the cingulate and prefrontal cortices, which are probably corticostriatal projection fibres. In contrast, permanent immunoreactivity occurs in what are probably thalamocortical fibres ending in layer IV, and in punctate terminals located in the upper third of layer I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AI :

Auditory area I

AA :

anterior auditory field

CG :

cingulate cortex

CL :

claustrum

CN :

caudate nucleus

COR :

sulcus coronarius

CP :

cortical plate

CRU :

sulcus cruciatus

EC :

entorhinal cortex

ECSA :

sulcus ectosylvius anterior

GABA :

gamma-aminobutyric acid

HP :

hippocampus

IC :

internal capsule

INS :

insular cortex

LAT :

sulcus lateralis

LGN :

lateral geniculate nucleus

MI :

primary motor area

MII :

supplementary motor area

PIR :

cortex piriformis

PLLS :

posterolateral lateral suprasylvian visual area

PMLS :

posteromedial lateral suprasylvian visual area

PRS :

sulcus praesylvius

PU :

putamen

RAN :

sulcus rhinicus anterior

SI :

somatosensory area I

SII :

somatosensory area II

SCC :

sulcus corporis callosi

SEP :

septum

SIL :

sulcus cerebri lateralis

SP :

subplate

SPL :

sulcus splenialis

SSPL :

sulcus suprasplenialis

SUPS :

sulcus suprasylvius

T :

thalamus

TE :

temporal auditory area

WM :

white matter

7 :

association area 7

17 :

primary visual area 17

18 :

visual area 18

19 :

visual area 19

References

  • Agmon A, O'Dowd D (1992) NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol 68:345–349

    Google Scholar 

  • Akil M, Lewis DA (1992) Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex. Exp Neurol 115:239–249

    Google Scholar 

  • Alcántara S, Ferrer I (1994) Postnatal development of parvalbumin immunoreactivity in the cerebral cortex of the cat. J Comp Neurol 348:133–149

    Google Scholar 

  • Alcántara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28k immunoreactivities in the cerebral cortex of the rat. Anat Embriol 188:63–73

    Google Scholar 

  • Andressen C, Blumcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208

    Google Scholar 

  • Armstrong-Jones M, Fox K (1988a) Evidence for a specific role for cortical NMDA receptors in slow-wave sleep. Brain Res 451:189–196

    Google Scholar 

  • Armstrong-Jones M, Fox K (1988b) The physiology of developing cortical neurons. In: Jones EG, Peters A (eds) Cerebral cortex, vol 7. Development and maturation of the cerebral cortex. Plenum Press, New York, pp 237–272

    Google Scholar 

  • Blümcke I, Hoff PR, Morrison JH, Celio MR (1990) Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432

    Google Scholar 

  • Burgard EC, Hablitz JJ (1993) Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. J Neurophysiol 69:230–240

    Google Scholar 

  • Cavanagh ME, Parnavelas JG (1988) Development of somatostatin immunoreactive neurons in the rat occipital cortex: a combined immunocytochemical-autoradiographic study. J Comp Neurol 268:1–12

    Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Google Scholar 

  • Celio MR, Baier W, Schärer L, Grefersen HJ, De Virag PA, Norman AW (1990) Monoclonal antibodies directed against the calciumbinding protein calbindin D-28k. Cell Calcium 11:599–602

    Google Scholar 

  • Chronwall B, Wolff JR (1980) Prenatal and postnatal development of GABA-accumulating cells in the occipital neocortex of the rat. J Comp Neurol 190:187–208

    Google Scholar 

  • Cobas A, Fairén A, Alvarez-Bolado G, Sánchez MP (1991) Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAa receptor. Neuroscience 40:375–397

    Google Scholar 

  • Cragg BG (1975) The development of synapses in the visual cortex of the cat. J Comp Neurol 160:147–166

    Google Scholar 

  • DeFelipe J, Jones EG (1992) High resolution and electron microscopic immunocytochemistry of colocalized GABA and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex. Europ J Neurosci 4:46–60

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989a) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989b) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86:2093–2097

    Google Scholar 

  • DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:665–673

    Google Scholar 

  • Del Rio JA, Soriano E, Ferrer I (1992) The development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326:501–526

    Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaegen JJ (1988) Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 8:988–1000

    Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Heizmann GW, Pochet R (1989) Calbindin D-28k and parvalbumin are confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neurosci Let 99:6–11

    Google Scholar 

  • Demeulemeester H, Arkens L, Vandesande F, Orban GA, Heizmann GW, Pochet R (1991a) Calcium binding proteins as molecular markers of cat geniculate neurons. Exp Brain Res 83:513–520

    Google Scholar 

  • Demeulemeester H, Arkens L, Vandesande F, Orban GA, Heizmann GW, Pochet R (1991b) Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Exp Brain Res 84:538–544

    Google Scholar 

  • Enderlin S, Norman AW, Celio MR (1987) Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system. Anat Embriol 177:15–28

    Google Scholar 

  • Ferrer I, Tuñon T, Soriano E, Del Rio JA, Fonseca M, Guionet N (1992) Calbindin-D28k immunoreactivity in normal human temporal neocortex. Brain Res 572:33–41

    Google Scholar 

  • Fiszman ML, Behar T, Lange GD, Smith SV, Novotny EA, Barker JL (1993) GABAergic cells and signals appear together in the early post-mitotic period of telencephalic and striatal development. Dev Brain Res 73:243–251

    Google Scholar 

  • Fukuda A, Mody I, Prince DA (1993) Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J Neurophysiol 70:448–452

    Google Scholar 

  • Hancock MB (1982) DAB-nickel substrate for the differential immunoperoxidase staining of nerve fibers and fiber terminals. J Histochem Cytochem 30:578–583

    Google Scholar 

  • Hendrickson AE, Van Brederode JFM, Mulligan KA, Celio MR (1991) Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. J Comp Neurol 307:626–646

    Google Scholar 

  • Hendry SHC, Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calciumbinding proteins. Brain Res 543:45–55

    Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivity. Exp Brain Res 76:467–472

    Google Scholar 

  • Hogan D, Berman NEJ (1993) Transient expression of calbindin-D28k immunoreactivity in layer V pyramidal neurons during postnatal development of kitten cortical areas. Dev Brain Res 74:177–192

    Google Scholar 

  • Hogan D, Berman NEJ (1994) The development of parvalbumin and calbindin-D28k immunoreactive interneurons in kitten visual cortical areas. Dev Brain Res 77:1–21

    Google Scholar 

  • Hogan D, Terwilleger ER, Berman NEJ (1992) Development of subpopulations of GABAergic neurons in cat visual cortical areas. Neuroreport 3:1069–1072

    Google Scholar 

  • Huntley GW, Jones EG (1990) Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. J Neurocytol 19:200–212

    Google Scholar 

  • Jones EG, Hendry SHC (1986) Colocalization of GABA and neuropeptides in cortical neurons. Trends Neurosci 9:71–76

    Google Scholar 

  • Komatsu Y (1983) Development of cortical inhibition in kitten striate cortex investigated by a slice preparation. Dev Brain Res 8:136–139

    Google Scholar 

  • Komatsu Y, Fujii K, Nakajima S, Umetani K, Toyama K (1985) Electrophysiological and morphological correlates in the development of visual cortical circuitry in infant kittens. Dev Brain Res 22:305–309

    Google Scholar 

  • Kosaka T, Heizmann CW, Tateishi K, Hamaoka Y, Hama K (1987) An aspect of the organizational principle of the τ-aminobutyric acid-ergic system in the cerebral cortex. Brain Res 409:403–408

    Google Scholar 

  • Kosaka T, Heizmann GW, Fujita S (1992) Monoclonal antibody 473 selectively stains a population of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Exp Brain Res 89:109–114

    Google Scholar 

  • Liu F, Graybiel AM (1992) Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. J Neurosci 12:674–690

    Google Scholar 

  • Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263

    Google Scholar 

  • Luskin MB, Shatz CJ (1985) Neurogenesis of the cat's primary visual cortex. J Comp Neurol 242:611–631

    Google Scholar 

  • Meyer G, Ferres-Torres R (1984) Postnatal maturation of non-pyramidal neurons in the visual cortex of the cat. J Comp Neurol 228:226–244

    Google Scholar 

  • Miller MW (1988) Development of projection and local circuit neurons in neocortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Development and maturation of the cerebral cortex. Plenum Press, New York, pp 133–175

    Google Scholar 

  • Miller RJ (1991) The control of neuronal Ca+2-homeostasis. Prog Neurobiol 37:255–285

    Google Scholar 

  • Molinari M, Legio MG, Dell'Anna ME, Giannetti S, Macchi G (1994) Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical and caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci 6:299–312

    Google Scholar 

  • Morino-Wannier P, Fujita SC, Jones EG (1992) GABAergic neuronal populations in monkey primary auditory cortex defined by co-localized calcium binding proteins and surface antigens. Exp Brain Res 88:422–432

    Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger NH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 11:462–467

    Google Scholar 

  • Sánchez MP, Frassoni C, Alvarez-Volado G, Spreafico R, Fairén A (1992) Distribution of calbindin and parvalbumin in the developing cortex and its primordium in rat: an immunohistochemical study. J Neurocytol 21:717–736

    Google Scholar 

  • Stichel CC, Singer W, Heizmann CW, Norman AW (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol 262:565–577

    Google Scholar 

  • Updyke BW (1993) Organization of visual corticostriatal projections in the cat, with observations on visual projection to claustrum and amygdala. J Comp Neurol 327:159–193

    Google Scholar 

  • Van Brederode JF, Mulligan KA, Hendrickson AE (1990) Calcium binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22

    Google Scholar 

  • Van Brederode JF, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium binding proteins parvalbumin and calbindin D-28k in the sensorimotor cortex of the rat. Neuroscience 44:157–171

    Google Scholar 

  • Van Eden CG, Mrzljak L, Voorn P, Uylings HBM (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    Google Scholar 

  • Wahle P (1993) Differential regulation of substance P and somatostatin in Martinotti cells of the developing cat visual cortex. J Comp Neurol 329:519–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcantara, S., Ferrer, I. Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat. Anat Embryol 192, 369–384 (1995). https://doi.org/10.1007/BF00710106

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00710106

Key words

Navigation