Skip to main content

Advertisement

Log in

PI3KCA mutations and/or PTEN loss in Her2-positive breast carcinomas treated with trastuzumab are not related to resistance to anti-Her2 therapy

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate whether activating mutations of the p110α catalytic subunit of class A phosphoinositide 3-kinases (PI3KCA) or complete loss of phosphatase and tensin homolog (PTEN) is associated with response to anti-human epidermal growth factor receptor 2 (Her2) treatment in breast cancer (BC). We analysed PI3KCA hot-spot mutations and PTEN immunohistochemical expression in 129 Her2-positive infiltrating BC treated with trastuzumab, including 26 cases treated with neoadjuvant therapy, 48 metastatic infiltrating breast cancer (IBC; MBC) and 55 early-stage IBC, with complete clinical information (mean follow-up 37, 66 and 32 months, respectively). PI3KCA hot-spot mutations were observed in 25 cases (19 %): 12 (9 %) in exon 9 and 13 (10 %) in exon 20. No correlations were observed between mutations and pathological and biological parameters. In patients treated with neoadjuvant therapy and in MBC, we did not observe any relationship with response to trastuzumab-based therapy. PTEN loss was observed in 24 out of 86 informative cases (28 %), 3 (13 %) of which were also mutated for PI3KCA. PI3K pathway activation, defined as PI3KCA mutation and/or PTEN loss, was not associated with response to treatment or clinical outcome in MBC. PI3KCA mutation and/or PTEN loss should not exclude patients from potentially beneficial anti-Her2 therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clifford A, Hudis MD (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  Google Scholar 

  2. Bailey TA, Luan H, Clubb RJ, Naramura M, Band V, Raja SM, Band H (2011) Mechanisms of Trastuzumab resistance in ErbB2-driven breast cancer and newer opportunities to overcome therapy resistance. J Carcinog 10:28

    Article  PubMed  CAS  Google Scholar 

  3. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141

    PubMed  CAS  Google Scholar 

  4. Mills GB, Kohn E, Lu Y, Eder A, Fang X, Wang H, Bast RC, Gray J, Jaffe R, Hortobagyi G (2003) Linking molecular diagnostics to molecular therapeutics: targeting the PI3K pathway in breast cancer. Semin Oncol 30(5 Suppl 16):93–104

    Article  PubMed  CAS  Google Scholar 

  5. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177:1647–1656

    Article  PubMed  CAS  Google Scholar 

  6. Lopez-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, Daly RJ, Musgrove EA, Sutherland RL (2010) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126:1121–1131

    PubMed  CAS  Google Scholar 

  7. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del GM, Ferro A, Dalla PP, Galligioni E, Marchetti A (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 13:6064–6069

    Article  PubMed  CAS  Google Scholar 

  8. Kalinsky K, Heguy A, Bhanot UK, Patil S, Moynahan ME (2011) PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Canc Res Treat 129:635–643

    Article  Google Scholar 

  9. Maruyama N, Miyoshi Y, Taguchi T, Tamaki Y, Monden M, Noguchi S (2007) Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin Cancer Res 13:408–414

    Article  PubMed  CAS  Google Scholar 

  10. Perez-Tenorio G, Berglund F, Esguerra MA, Nordenskjold B, Rutqvist LE, Skoog L, Stal O (2006) Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and poor response to tamoxifen in breast cancer. Int J Oncol 28:1031–1042

    PubMed  CAS  Google Scholar 

  11. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091

    Article  PubMed  CAS  Google Scholar 

  12. Lerma E, Catasus L, Gallardo A, Peiro G, Alonso C, Aranda I, Barnadas A, Prat J (2008) Exon 20 PIK3CA mutations decreases survival in aggressive (HER-2 positive) breast carcinomas. Virchows Arch 453:133–139

    Article  PubMed  CAS  Google Scholar 

  13. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559

    Article  PubMed  CAS  Google Scholar 

  14. Li SY, Rong M, Grieu F, Iacopetta B (2006) PIK3CA mutations in breast cancer are associated with poor outcome. Breast Canc Res Treat 96:91–95

    Article  CAS  Google Scholar 

  15. Buttitta F, Felicioni L, Barassi F, Martella C, Paolizzi D, Fresu G, Salvatore S, Cuccurullo F, Mezzetti A, Campani D, Marchetti A (2007) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355

    Article  Google Scholar 

  16. Benvenuti S, Frattini M, Arena S, Zanon C, Cappelletti V, Coradini D, Daidone MG, Pilotti S, Pierotti MA, Bardelli A (2008) PIK3CA cancer mutations display gender and tissue specificity patterns. Hum Mutat 29:284–288

    Article  PubMed  CAS  Google Scholar 

  17. Liedtke C, Cardone L, Tordai A, Yan K, Gomez HL, Figureoa LJ, Hubbard RE, Valero V, Souchon EA, Symmans WF, Hortobagyi GN, Bardelli A, Pusztai L (2008) PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. Breast Canc Res 10:R27

    Article  Google Scholar 

  18. Tsutsui S, Inoue H, Yasuda K, Suzuki K, Higashi H, Era S, Mori M (2005) Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology 68:398–404

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, Burgues O, Lluch AM, Chen H, Hortobagyi GN, Mills GB, Meric-Bernstam F (2011) PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther 10:1093–1101

    Article  PubMed  CAS  Google Scholar 

  20. Gori S, Sidoni A, Colozza M, Ferri I, Mameli MG, Fenocchio D, Stocchi L, Foglietta J, Ludovini V, Minenza E, De Angelis V, Crino L (2009) EGFR, pMAPK, pAkt and PTEN status by immunohistochemistry: correlation with clinical outcome in HER2-positive metastatic breast cancer patients treated with trastuzumab. Ann Oncol 20:648–654

    Article  PubMed  CAS  Google Scholar 

  21. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Canc Cell 12:395–402

    Article  CAS  Google Scholar 

  22. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Canc Biol Ther 3:772–775

    Article  CAS  Google Scholar 

  23. Boyault S, Drouet Y, Navarro C, Bachelot T, Lasset C, Treilleux I, Tabone E, Puisieux A, Wang Q (2012) Mutational characterization of individual breast tumors: TP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes. Breast Canc Res Treat 132:23–39

    Article  Google Scholar 

  24. Michelucci A, Di CC, Lami A, Collecchi P, Caligo A, Decarli N, Leopizzi M, Aretini P, Bertacca G, Porta RP, Ricci S, Della RC, Stanta G, Bevilacqua G, Cavazzana A (2009) PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. Diagn Mol Pathol 18:200–205

    Article  PubMed  CAS  Google Scholar 

  25. Ellis MJ, Lin L, Crowder R, Tao Y, Hoog J, Snider J, Davies S, DeSchryver K, Evans DB, Steinseifer J, Bandaru R, Liu W, Gardner H, Semiglazov V, Watson M, Hunt K, Olson J, Baselga J (2010) Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Canc Res Treat 119:379–390

    Article  CAS  Google Scholar 

  26. Dupont JJ, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, Liu W, Hackl W, Barrett JC, Gardner H (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17:667–677

    Article  Google Scholar 

  27. Lai YL, Mau BL, Cheng WH, Chen HM, Chiu HH, Tzen CY (2008) PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15:1064–1069

    Article  PubMed  Google Scholar 

  28. Razis E, Bobos M, Kotoula V, Eleftheraki AG, Kalofonos HP, Pavlakis K, Papakostas P, Aravantinos G, Rigakos G, Efstratiou I, Petraki K, Bafaloukos D, Kostopoulos I, Pectasides D, Kalogeras KT, Skarlos D, Fountzilas G (2011) Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Canc Res Treat 128:447–456

    Article  CAS  Google Scholar 

  29. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, Sampath D, Sliwkowski MX (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Canc Cell 15:429–440

    Article  CAS  Google Scholar 

  30. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck SG, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne CK, Chang JC (2011) Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol 29:166–173

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z, Wang B, Shao Z, Wang Z, Hu X (2011) PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Canc 11:11

    Article  Google Scholar 

  32. Brunner-Kubath C, Shabbir W, Saferding V, Wagner R, Singer CF, Valent P, Berger W, Marian B, Zielinski CC, Grusch M, Grunt TW (2011) The PI3 kinase/mTOR blocker NVP-BEZ235 overrides resistance against irreversible ErbB inhibitors in breast cancer cells. Breast Canc Res Treat 129:387–400

    Article  Google Scholar 

  33. Miller TW, Rexer BN, Garrett JT, Arteaga CL (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Canc Res 13:224

    Article  CAS  Google Scholar 

  34. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68:9221–9230

    Article  PubMed  CAS  Google Scholar 

  35. Cantaloni C, Tonini RE, Eccher C, Morelli L, Leonardi E, Bragantini E, Aldovini D, Fasanella S, Ferro A, Cazzolli D, Berlanda G, Dalla PP, Barbareschi M (2011) Diagnostic value of automated Her2 evaluation in breast cancer: a study on 272 equivocal (score 2+) Her2 immunoreactive cases using an FDA approved system. Appl Immunohistochem Mol Morphol 19:306–312

    Article  PubMed  Google Scholar 

  36. Barbareschi M, Girlando S, Mauri FM, Forti S, Eccher C, Mauri FA, Togni R, Dalla PP, Doglioni C (1994) Quantitative growth fraction evaluation with MIB1 and Ki67 antibodies in breast carcinomas. Am J Clin Pathol 102:171–175

    PubMed  CAS  Google Scholar 

  37. Fasanella S, Leonardi E, Cantaloni C, Eccher C, Bazzanella I, Aldovini D, Bragantini E, Morelli L, Cuorvo LV, Ferro A, Gasperetti F, Berlanda G, Dalla PP, Barbareschi M (2011) Proliferative activity in human breast cancer: Ki-67 automated evaluation and the influence of different Ki-67 equivalent antibodies. Diagn Pathol 6(Suppl 1):S7

    Article  PubMed  Google Scholar 

  38. Xu BH, Jiang ZF, Chua D, Shao ZM, Luo RC, Wang XJ, Liu DG, Yeo W, Yu SY, Newstat B, Preston A, Martin AM, Chi HD, Wang L (2011) Lapatinib plus capecitabine in treating HER2-positive advanced breast cancer: efficacy, safety, and biomarker results from Chinese patients. Chin J Canc 30:327–335

    Article  CAS  Google Scholar 

  39. Girlando S, Cuorvo LV, Bonzanini M, Morelli L, Amadori P, Dalla PP, Barbareschi M (2011) High prevalence of B-RAF mutation in papillary carcinoma of the thyroid in north-east Italy. Int J Surg Pathol 8:173–176

    Google Scholar 

  40. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 13:5883–5888

    Article  PubMed  CAS  Google Scholar 

  41. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu XY (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Canc Cell 18:160–170

    Article  CAS  Google Scholar 

  42. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, DiGiovanna MP, Wang CX, Hilsenbeck SG, Osborne CK, Allred DC, Elledge R, Jenny C, Chang JC (2005) Neoadjuvant Trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 23:2460–2468

    Article  PubMed  CAS  Google Scholar 

  43. Varchetta S, Gibelli L, Oliviero V, Nardini E, Gennari R, Gatti G, Silva LS, Villani N, Tagliabue E, Menard S, Costa A, Fannioni FF (2007) Element related to enterogenity of antibody-dependent cell cytotoxicity in patients under Trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res 67:11991–11999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by grants of the Provincia Autonoma di Trento, Italy and of the Fondazione Cassa di Risparmio di Trento e Rovereto, Italy.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Barbareschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbareschi, M., Cuorvo, L.V., Girlando, S. et al. PI3KCA mutations and/or PTEN loss in Her2-positive breast carcinomas treated with trastuzumab are not related to resistance to anti-Her2 therapy. Virchows Arch 461, 129–139 (2012). https://doi.org/10.1007/s00428-012-1267-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1267-2

Keywords

Navigation