Skip to main content
Log in

Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22

    PubMed  CAS  Google Scholar 

  • Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Alwes F, Scholtz G (2005) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    Article  Google Scholar 

  • Andrioli LP, Oberstein AL, Corado MS, Yu D, Small S (2004) Groucho-dependent repression by sloppy-paired 1 differentially positions anterior pair-rule stripes in the Drosophila embryo. Dev Biol 276:541–551

    Article  PubMed  CAS  Google Scholar 

  • Birkan M, Schaeper ND, Chipman AD (2011) Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 13:436–447

    Article  Google Scholar 

  • Brown SJ, Patel NH, Denell RE (1994) Embryonic expression of the single Tribolium engrailed homolog. Dev Genet 15:7–18

    Article  PubMed  CAS  Google Scholar 

  • Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

    Article  PubMed  Google Scholar 

  • Cadigan KM, Grossniklaus U, Gehring WJ (1994a) Functional redundancy: the respective roles of the two sloppy paired genes in Drosophila segmentation. Proc Natl Acad Sci U S A 91:6324–6328

    Article  PubMed  CAS  Google Scholar 

  • Cadigan KM, Grossniklaus U, Gehring WJ (1994b) Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. Genes Dev 8:899–913

    Article  PubMed  CAS  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A 108:15920–15924

    Article  PubMed  CAS  Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004a) A double segment periodicity underlies segment generation in centipede development. Curr Biol 14:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004b) Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 6:78–89

    Article  PubMed  Google Scholar 

  • Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103:6560–6564

    Article  PubMed  CAS  Google Scholar 

  • Choe CP, Brown SJ (2007) Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Dev Biol 302:281–294

    Article  PubMed  CAS  Google Scholar 

  • Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325:482–491

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Jürgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485

    Article  PubMed  CAS  Google Scholar 

  • Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1999) Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. Development 126:4385–4394

    PubMed  CAS  Google Scholar 

  • Damen WG, Hausdorf M, Seyfarth E-A, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670

    Article  PubMed  CAS  Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    PubMed  CAS  Google Scholar 

  • Damen WG (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391

    Article  PubMed  CAS  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  PubMed  CAS  Google Scholar 

  • Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, Schioett M, Brown SJ, Elsik CG, Holland PW, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16:1376–1384

    Article  PubMed  CAS  Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O'Farrell PH (1985) Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69

    Article  PubMed  CAS  Google Scholar 

  • Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jahrb Anat 81:241–310

    Google Scholar 

  • Dray N, Tessmar-Raible K, Le Gouar M, Vibert L, Christodoulou F, Schipany K, Guillou A, Zantke J, Snyman H, Behague J, Vervoort M, Arendt D, Balavoine G (2010) Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329:339–342

    Article  PubMed  CAS  Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21

    Article  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sörensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Economou AD, Telford MJ (2009) Comparative gene expression in the heads of Drosophila melanogaster and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal lobes. Evol Dev 11:88–96

    Article  PubMed  CAS  Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–78

    Article  PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264

    Article  PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122

    Article  PubMed  Google Scholar 

  • Farzana L, Brown SJ (2008) Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 218:181–192

    Article  PubMed  CAS  Google Scholar 

  • Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and engrailed homologs in tardigrade development. Dev Genes Evol 217:421–433

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247:47–61

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Prpic NM, Damen WG (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Damen WG (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Budd GE, Damen WG, Prpic NM (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic NM, Kosiol C, Damen WG, Balavoine G, McGregor AP (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of axis elongation and segmentation. BMC Evol Biol 10:374

    Article  PubMed  CAS  Google Scholar 

  • Janssen R (2011) Diplosegmentation in the pill millipede Glomeris marginata is the result of dorsal fusion. Evol Dev 13:477–487

    Article  CAS  Google Scholar 

  • Janssen R, Budd GE, Prpic NM, Damen WG (2011a) Expression of myriapod pair rule gene orthologs. EvoDevo 2:5

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Damen WG, Budd GE (2011b) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50

    Article  PubMed  Google Scholar 

  • Janssen R, Budd GE, Damen WG (2011c) Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 357:64–72

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Damen WG, Budd GE (2012) Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC Dev Biol 12:15

    Article  PubMed  Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organization of the head in the embryo of Drosophila melanogaster. Roux´s Arch Dev Biol 195:359–377

    Article  Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500

    Article  PubMed  Google Scholar 

  • Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130

    Article  PubMed  CAS  Google Scholar 

  • Mohler J, Vani K (1992) Molecular organization and embryonic expression of the hedgehog gene involved in cell–cell communication in segmental patterning of Drosophila. Development 115:957–971

    PubMed  CAS  Google Scholar 

  • Mohler J (1995) Spatial regulation of segment polarity gene expression in the anterior terminal region of the Drosophila blastoderm embryo. Mech Dev 50:151–161

    Article  PubMed  CAS  Google Scholar 

  • Ntini E, Wimmer EA (2011a) Unique establishment of procephalic head segments is supported by the identification of cis-regulatory elements driving segment-specific segment polarity gene expression in Drosophila. Dev Genes Evol 221:1–16

    Article  PubMed  Google Scholar 

  • Ntini E, Wimmer EA (2011b) Second order regulator Collier directly controls intercalary-specific segment polarity gene expression. Dev Biol 360:403–414

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell BC, Jockusch EL (2010) The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). Dev Genes Evol 220:11–24

    Article  PubMed  Google Scholar 

  • Oppenheimer DI, MacNicol AM, Patel NH (1999) Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr Biol 9:1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Pankratz MJ, Jäckle H (1993) Blastoderm segmentation. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 467–516

    Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    PubMed  CAS  Google Scholar 

  • Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WG (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Peel A, Akam M (2003) Evolution of segmentation: rolling back the clock. Curr Biol 13:R708–R710

    Article  PubMed  CAS  Google Scholar 

  • Peterson MD, Popadic A, Kaufman TC (1998) The expression of two engrailed-related genes in an apterygote insect and a phylogenetic analysis of insect engrailed-related genes. Dev Genes Evol 208:547–557

    Article  PubMed  CAS  Google Scholar 

  • Posnien N, Bucher G (2010) Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function. Dev Biol 338:107–116

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Janssen R, Wigand B, Klingler M, Damen WG (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Bio 260:97–112

    Article  CAS  Google Scholar 

  • Prpic NM, Janssen R, Damen WG, Tautz D (2005) Evolution of dorsal–ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evol Dev 7:51–57

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Damen WG (2005) A homolog of the hydrolase Notum is expressed during segmentation and appendage formation in the Central American hunting spider Cupiennius salei. Naturwissenschaften 92:246–249

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM (2008) Parasegmental appendage allocation in annelids and arthropods and the homology of parapodia and arthropodia. Front Zool 5:17

    Article  PubMed  Google Scholar 

  • Pultz MA, Pitt JN, Alto NM (1999) Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. Development 126:701–710

    PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440

    Article  PubMed  Google Scholar 

  • Sánchez L, Chaouiya C, Thieffry D (2008) Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module. Int J Dev Biol 52:1059–1075

    Article  PubMed  Google Scholar 

  • Sanson B (2001) Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 2:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336:338–341

    Article  PubMed  CAS  Google Scholar 

  • Schaeper ND, Pechmann M, Damen WG, Prpic NM, Wimmer EA (2010) Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344:363–376

    Article  PubMed  CAS  Google Scholar 

  • Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G (2008) Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317:600–613

    Article  PubMed  CAS  Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478

    PubMed  CAS  Google Scholar 

  • Schoppmeier M, Damen WG (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evol Dev 7:160–167

    Article  PubMed  CAS  Google Scholar 

  • Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WG (2009) Hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol 19:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Simonnet F, Deutsch J, Queinnec E (2004) hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545

    Article  PubMed  CAS  Google Scholar 

  • St. Johnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Eaton S, Kornberg TB (1992) The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6:2635–2645

    Article  PubMed  CAS  Google Scholar 

  • Tashiro S, Michiue T, Higashijima S, Zenno S, Ishimaru S, Takahashi F, Orihara M, Kojima T, Saigo K (1993) Structure and expression of hedgehog, a Drosophila segment-polarity gene required for cell–cell communication. Gene 124:183–189

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their tritocerebral segment. Proc Natl Acad Sci USA 95:10671–10675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank two anonymous reviewers for their helpful comments on the manuscript and John Peel for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Janssen.

Additional information

Communicated by: S. Roth

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Expression of Glomeris hedgehog at stage 0.3. Embryos are oriented with anterior to the left. a Stage 0.3. Same complement of hh stripes as in a slightly older stage 0.4 embryo (cf. Fig. 1d). a′ DAPI counterstaining of the same embryo shown in a (JPEG 153 kb)

High-resolution image (TIFF 4124 kb)

Fig. S2

Additional aspects of engrailed expression. Embryos are oriented with anterior to the left. a Embryo of intermediate stage between stage 0 and stage 0.1 (cf. Janssen et al. (2004)). Weak expression of en which is in the mandibular segment primordium (arrowhead) precedes expression in the other segment primordia. a′ Same embryo as shown in a. DAPI counterstaining. Arrowhead as in a (JPEG 150 kb)

High Resolution image (TIFF 3789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, R. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 222, 299–309 (2012). https://doi.org/10.1007/s00427-012-0413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0413-9

Keywords

Navigation