Skip to main content
Log in

Genome-wide identification and expression analysis of the cotton patatin-related phospholipase A genes and response to stress tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Patatin-related phospholipase A genes were involved in the response of Gossypium hirsutum to drought and salt tolerance.

Abstract

pPLA (patatin-related phospholipase A) is a key enzyme that catalyzes the initial step of lipid hydrolysis, which is involved in biological processes, such as drought, salt stress, and freezing injury. However, a comprehensive analysis of the pPLA gene family in cotton, especially the role of pPLA in the response to drought and salt tolerance, has not been reported so far. A total of 33 pPLA genes were identified in this study using a genome-wide search approach, and phylogenetic analysis classified these genes into three groups. These genes are unevenly distributed on the 26 chromosomes of cotton, and most of them contain a few introns. The results of the collinear analysis showed that G. hirsutum contained 1–5 copies of each pPLA gene found in G. arboreum and G. raimondii. The subcellular localization analysis of Gh_D08G061200 showed that the protein was localized in the nucleus. In addition, analysis of published upland cotton transcriptome data revealed that six GhPLA genes were expressed in various tissues and organs. Two genes (Gh_A04G142100.1 and Gh_D04G181000.1) were highly expressed in all tissues under normal conditions, showing the expression characteristics of housekeeping genes. Under different drought and salt tolerance stresses, we detected four genes with different expression levels. This study helps to clarify the role of pPLA in the response to drought and salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated during the current study.

References

  • Abdelraheem A, Esmaeili N, O’Connell M, Zhang J (2019) Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod 130:118–129

    Article  CAS  Google Scholar 

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Arrese EL, Patel RT, Soulages JL (2006) The main triglyceride-lipase from the insect fat body is an active phospholipase A1: identification and characterization. J Lipid Res 47(12):2656–2667

    Article  CAS  PubMed  Google Scholar 

  • Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling 1. J Lipid Res 50:S237–S242

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3(11):419–426

    Article  Google Scholar 

  • Chen G, Snyder CL, Greer MS, Weselake RJ (2011) Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci 30(3):239–258

    Article  Google Scholar 

  • Chen G, Greer MS, Weselake RJ (2013) Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. Biomol Concepts 4(5):527–532

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Clark JW, Donoghue PC (2018) Whole-genome duplication and plant macroevolution. Trends Plant Sci 23(10):933–945

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo JC, Ramirez-Parra E (2015) Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot 66(22):6991–7003

    Article  PubMed  Google Scholar 

  • Exton JH (2000) Phospholipases. In: Conns PM, Means AR (eds) Principles of molecular regulation. Springer, New York, pp 229–245

    Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39 (suppl_2):W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Li X, Cheng L, Liu Y, Wang H, Ke D, Yuan H, Zhang L, Wang L (2016) Genome-wide analysis of soybean JmjC domain-containing proteins suggests evolutionary conservation following whole-genome duplication. Front Plant Sci 7:1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhao J, Guo L, Kim S-C, Deng X, Wang G, Zhang G, Li M, Wang X (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu Y (2020) Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 52(5):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Huang J-Q, Chen X-Y, Zhu Y-X (2021) Recent advances and future perspectives in cotton research. Annu Rev Plant Biol 72:437–462

    Article  CAS  PubMed  Google Scholar 

  • Kaniuga Z (2008) Chilling response of plants: importance of galactolipase, free fatty acids and free radicals. Plant Biol 10(2):171–184

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Jeun Y, Hwang BK (2014) The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. Plant Mol Biol 84(3):329–344. https://doi.org/10.1007/s11103-013-0137-x

    Article  CAS  PubMed  Google Scholar 

  • Lager I, Yilmaz JL, Zhou X-R, Jasieniecka K, Kazachkov M, Wang P, Zou J, Weselake R, Smith MA, Bayon S (2013) Plant acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem 288(52):36902–36914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T-H, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41(D1):D1152–D1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang X (2019) Phospholipase D and phosphatidic acid in plant immunity. Plant Sci 279:45–50

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33(5):524–530

    Article  PubMed  Google Scholar 

  • Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the Hsp 20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14(1):1–17

    Article  Google Scholar 

  • Luhua S, Hegie A, Suzuki N, Shulaev E, Luo X, Cenariu D, Ma V, Kao S, Lim J, Gunay MB, Oosumi T, Lee SC, Harper J, Cushman J, Gollery M, Girke T, Bailey-Serres J, Stevenson RA, Zhu J-K, Mittler R (2013) Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant 148(3):322–333. https://doi.org/10.1111/ppl.12013

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Ibanez AM, Reagan RL, Davino S, Dandekar AM (2015) Stress responses in citrus peel: comparative analysis of host responses to Huanglongbing disease and puffing disorder. Sci Hortic 192:409–420. https://doi.org/10.1016/j.scienta.2015.06.037

    Article  Google Scholar 

  • Munnik T (2014) PI-PLC: phosphoinositide-phospholipase C in plant signaling. In: Wang X (ed) Phospholipases in plant signaling. Springer, New York, pp 27–54

    Chapter  Google Scholar 

  • Nakamura Y, Ngo AH (2020) Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development. J Plant Res 133(4):489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9(5):229–235

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB, Karlsson BH, Özgen M, Palta JP (1997) Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant. Proc Natl Acad Sci 94(23):12717–12721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer GF, Ryu SB, Wang X, Matos AR, Heitz T (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700

    Article  CAS  PubMed  Google Scholar 

  • Simon E (1974) Phospholipids and plant membrane permeability. New Phytol 73(3):377–420

    Article  CAS  Google Scholar 

  • Singh A, Bhatnagar N, Pandey A, Pandey GK (2015) Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Cao Z, Li Y, Zhao Y, Zhang H (2007) A simple and effective method for protein subcellular localization using Agrobacterium-mediated transformation of onion epidermal cells. Biologia 62(5):529–532

    Article  CAS  Google Scholar 

  • Takáč T, Novák D, Šamaj J (2019) Recent advances in the cellular and developmental biology of phospholipases in plants. Front Plant Sci 10:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan Z, Hu Y, Lin Z (2012) PhPT4 is a mycorrhizal-phosphate transporter suppressed by lysophosphatidylcholine in Petunia roots. Plant Mol Biol Report 30(6):1480–1487

    Article  CAS  Google Scholar 

  • Tjellström H, Andersson MX, Larsson KE, Sandelius AS (2008) Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 31(10):1388–1398

    Article  PubMed  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18(7):411–424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ryu S, Wang X (2012) Plant phospholipases: an overview. In: Sandoval G (ed) Lipases and phospholipases. Humana Press, Totowa, NJ, pp 123–137

    Chapter  Google Scholar 

  • Wang P, Sun X, Xie Y, Li M, Chen W, Zhang S, Liang D, Ma F (2014) Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. J Pineal Res 57(3):291–307. https://doi.org/10.1111/jpi.12169

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Zhang L, Duan Z, Lin J (2021) Coordination of phospholipid-based signaling and membrane trafficking in plant immunity. Trends Plant Sci 26(4):407–420

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Lu S, Zhuang M, Zhang Y, Lv H, Ji J, Hou X, Fang Z, Wang Y, Yang L (2021) Genome-wide identification and expression analysis of the Brassica oleracea L. chitin-binding genes and response to pathogens infections. Planta 253(4):80. https://doi.org/10.1007/s00425-021-03596-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (5201101621). This work was performed at the China–Pakistan Joint Laboratory for Cotton Biotechnology, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangrong He or Rui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chong, Z., Lu, C. et al. Genome-wide identification and expression analysis of the cotton patatin-related phospholipase A genes and response to stress tolerance. Planta 257, 49 (2023). https://doi.org/10.1007/s00425-023-04081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04081-8

Keywords

Navigation