Skip to main content
Log in

The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp.

Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANR :

Anthocyanidin reductase

ANS :

Anthocyanidin synthase

CHS :

Chalcone synthase

DFR :

Dihydroflavonol 4-reductase

DMACA:

4-Dimethylaminocinnamaldehyde

LAR :

Leucoanthocyanidin reductase

LDOX :

Leucoanthocyanidin synthase

PAL :

Phenylalanine ammonia-lyase

PAs:

Proanthocyanidins

References

  • Abrahams S, Lee E, Walker AR et al (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35:624–636

    Article  CAS  PubMed  Google Scholar 

  • Aerts RJ, Barry TN, Mcnabb WC (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric Ecosyst Environ 75:1–12

    Article  CAS  Google Scholar 

  • Albert NW (2015) Subspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in forage legumes. Front Plant Sci 6:1–13

    Article  Google Scholar 

  • Albert NW, Griffiths AG, Cousins GR (2014) Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol 205:882–893

    Article  PubMed  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Appelhagen I, Nordholt N, Seidel T et al (2015) TRANSPARENT TESTA 13 is a tonoplast P3A-ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. Plant J 82:840–849

    Article  CAS  PubMed  Google Scholar 

  • Barry TN, Mcnabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–272

    CAS  PubMed  Google Scholar 

  • Blumenthal MJ, McGraw RL (1999) Lotus adaptation, use, and management. In: Beuselinck PR (ed) Trefoil: the science and technology of Lotus. CSSA Special Publication Number 28, Madison, Wisconsin, pp 97–119

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  Google Scholar 

  • Debeaujon I, Peeters AJM, Léon-kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rienzo J, Casanoves F, Balzarini M et al (2008) InfoStat, versión 2010, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Xie D-Y, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Escaray FJ, Menéndez AB, Gárriz A et al (2012a) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–133

    Article  CAS  PubMed  Google Scholar 

  • Escaray FJ, Rosato M, Pieckenstain FL et al (2012b) The proanthocyanidin content as a tool to differentiate between Lotus tenuis and L. corniculatus individuals. Phytochem Lett 5:37–40

    Article  CAS  Google Scholar 

  • Escaray FJ, Passeri V, Babuin MF et al (2014) Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biol 14:14–40

    Article  Google Scholar 

  • Feller A, MacHemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (2010) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (New York) 39:783–791

    Google Scholar 

  • Foo LY, Newman R, Waghorn G et al (1996) Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624

    Article  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber MY, Skadhauge B, Yu M et al (2008) Variation in morphology, plant habit, proanthocyanidins, and flavonoids within a Lotus germplasm collection. Can J Plant Sci 88:121–132

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignament editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hancock KR, Collette V, Fraser K et al (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kingston-Smith AH, Thomas HM (2003) Strategies of plant breeding for improved rumen function. Ann Appl Biol 142:13–24

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J-M et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li PH, Dong Q, Ge SJ et al (2016) Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotechnol J 14:1604–1618. doi:10.1111/pbi.12524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang X, Shulaev V, Dixon RA (2016) A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nat Plants 2:16182

    Article  CAS  PubMed  Google Scholar 

  • Małolepszy A, Mun T, Sandal N et al (2016) The LORE1 insertion mutant resource. Plant J 88:306–317

    Article  PubMed  Google Scholar 

  • Marinova K, Pourcel L, Weder B et al (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesi N, Debeaujon I, Jond C et al (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesi N, Jond C, Debeaujon I et al (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Pang Y, Peel GJ, Wright E et al (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB et al (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci USA 105:14210–14225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Wenger JP, Saathoff K et al (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151:1114–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolocci F, Robbins MP, Madeo L et al (2007) Ectopic expression of a basic helix–loop–helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiol 143:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolocci F, Robbins MP, Passeri V et al (2011) The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J Exp Bot 62:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Patra AK, Saxena J (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198–1222

    Article  CAS  PubMed  Google Scholar 

  • Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59:136–149

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1–10

    Article  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L et al (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer, Columbus, pp 97–122

    Chapter  Google Scholar 

  • Robbins MP, Paolocci F, Hughes J-W et al (2003) Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54:239–248

    Article  CAS  PubMed  Google Scholar 

  • Sivakumaran S, Rumball W, Lane GA et al (2006) Variation of proanthocyanidins in Lotus species. J Chem Ecol 32:1797–1816

    Article  CAS  PubMed  Google Scholar 

  • Skadhauge B, Gruber MY, Thomsen KK, Von Wettstein D (1997) Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. Am J Bot 84:494–503

    Article  CAS  Google Scholar 

  • Steinfeld H, Wassenaar T (2007) The role of livestock production in carbon and nitrogen cycles. Annu Rev Environ Resour 32:271–296

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S et al (2003) Proanthocyanidin biosynthesis in plants. J Biol Chem 278:31647–31656

    Article  CAS  PubMed  Google Scholar 

  • Urbański DF, Małolepszy A, Stougaard J, Andersen SU (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J 69:731–741

    Article  PubMed  Google Scholar 

  • Verdier J, Zhao J, Torres-Jerez I et al (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci USA 109:1766–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hua W, Wang J et al (2013) Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Mol Genet genomics MGG 288:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Paiva NL et al (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Tan H, Ma Z, Huang J (2016) DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Mol Plant 9:711–721

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Kaneko T et al (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–169

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Shimada N et al (2010a) Transcriptional control of the dihydroflavonol 4-reductase multigene family in Lotus japonicus. J Plant Res 123:801–805

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kume N, Nakaya Y et al (2010b) Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus. Plant Cell Physiol 51:912–922

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M et al (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Dixon RA (2009a) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Dixon RA (2009b) The “ins” and “outs” of flavonoid transport. Trends Plant Sci 15:72–80

    Article  PubMed  Google Scholar 

  • Zhao J, Huhman D, Shadle G et al (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Wei L, Sun Z et al (2015) Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 99(9):3797–3806. doi:10.1007/s00253-015-6533-1

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FONCYT-PICT 2011-1612, PICT 2014-3718 and 2014-3648 grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT-Argentina); PIP 0980 grant from Consejo Nacional de Ciencia y Tecnologìa (CONICET-Argentina), CNR-CONICET bilateral project 2014–2016, and by Fondazione Cassa di Risparmio di Perugia grant n° 2015.0303 021. The authors are grateful to the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolocci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 195 kb)

Supplementary material 2 (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escaray, F.J., Passeri, V., Perea-García, A. et al. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. Planta 246, 243–261 (2017). https://doi.org/10.1007/s00425-017-2696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2696-6

Keywords

Navigation