Skip to main content

Advertisement

Log in

Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The present study provides evidence of a unique function of RGG1 in providing salinity stress tolerance in transgenic rice without affecting yield. It also provides a good example for signal transduction from the external environment to inside for enhanced agricultural production that withstands the extreme climatic conditions and ensures food security.

The role of heterotrimeric G-proteins functioning as signalling molecules has not been studied as extensively in plants as in animals. Recently, their importance in plant stress signalling has been emerging. In this study, the function of rice G-protein γ subunit (RGG1) in the promotion of salinity tolerance in rice (Oryza sativa L. cv. IR64) was investigated. The overexpression of RGG1 driven by the CaMV35S promoter in transgenic rice conferred high salinity tolerance even in the presence of 200 mM NaCl. Transcript levels of antioxidative genes, i.e., CAT, APX, and GR, and their enzyme activities increased in salinity-stressed transgenic rice plants suggesting a better antioxidant system to cope the oxidative-damages caused by salinity stress. The RGG1-induced signalling events that conferred tolerance to salinity was mediated by increased gene expression of the enzymes that scavenged reactive oxygen species. In salinity-stressed RGG1 transgenic lines, the transcript levels of RGG2, RGB, RGA, DEP1, and GS3 also increased in addition to RGG1. These observations suggest that most likely the stoichiometry of the G-protein complex was not disturbed under stress. Agronomic parameters, endogenous sugar content (glucose and fructose) and hormones (GA3, zeatin and IAA) were also higher in the transgenic plants compared with the wild-type plants. A BiFC assay confirmed the interaction of RGG1 with different stress-responsive proteins which play active roles in signalling and prevention of aggregation of proteins under stress-induced perturbation. The present study will help in understanding the G-protein-mediated stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGG1 (2, 3):

Arabidopsis G-protein gamma subunit 1 (2, 3)

APX:

Ascorbate peroxidase

CAT:

Catalase

DEP1:

Dense and erect panicle

GR:

Glutathiol reductase

GS3:

Grain size 3

OsGGC2:

G-protein gamma subunit type C number 2 of rice

RGA:

Rice G-protein alpha subunit

RGB:

Rice G-protein beta subunit

RGG1 (2):

Rice G-protein gamma subunit 1 (2)

ROS:

Reactive oxygen species

WT:

Wild type

VC:

Vector control

References

  • Alvarez S, Roy Choudhury S, Sivagnanam K, Hicks LM, Pandey S (2015) Quantitative proteomics analysis of Camelina sativa seeds overexpressing the AGG3 gene to identify the proteomic basis of increased yield and stress tolerance. J Proteome Res 14:2606–2616. doi:10.1021/acs.jproteome.5b00150

    Article  CAS  PubMed  Google Scholar 

  • Assmann SM (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14:S355–S373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornheef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen-activated protein kinase. Plant Signal Behav 6:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj D, Lakhanpaul S, Tuteja N (2012) Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling. Plant Physiol Biochem 58:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Botella JR (2012) Can heterotrimeric G proteins helps to feed the world? Trends Plant Sci 17:563–568

    Article  CAS  PubMed  Google Scholar 

  • Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J 67:840–851

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Gookin TE, Milner MJ, Yu Y, Assmann SM (2015) Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signalling. Plant Physiol 169:512–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha-um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2009) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant 31:477–486

    Article  CAS  Google Scholar 

  • Chen JG, Du XM, Zhao HY, Zhou X (1996) Fluctuation in levels of endogenous plant hormones in ovules of normal and mutant cotton during flowering and their relation to fibre development. J Plant Growth Regul 15:173–177

    Article  Google Scholar 

  • Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y, Djonović S, Millet Y, Bush J, McConkey BJ, Sheen J, Ausubel FM (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521:213–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Yu CY, Iwasa T, Kanehara K (2015) Heterotrimeric G protein subunits differentially respond to endoplasmic reticulum stress in Arabidopsis. Plant Signal Behav 10:e1061162. doi:10.1080/15592324.2015.1061162

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS One 6(8):e23361. doi:10.1371/journal.pone.0023361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colaneri A, Ozdemir M, Huang J, Jones A (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolley D, Leyton L (1968) Effects of growth regulating substances and water potential on the development of secondary xylem in fraxinus. New Phytol 67:579–594

    Article  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Dupre DJ, Robitaille M, Rebois RV, Hebert TE (2009) The role of Gbc subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 49:31–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg B, Jaiswal JP, Misra S, Tripathi BN, Prasad MA (2012) A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L. emThell) cultivars collected from different agroclimatic zones. Physiol Mol Biol Plants 18:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge XM, Cai LH, Lei X, Zhou X, Yue M, He JM (2015) Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. Plant J 82:138–150

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–939

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22

    Article  CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Zhang X, Jiang J, Guan Z, Zhao S, Fang W, Liao Y, Chen S, Chen F (2014) Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake. Sci Rep 4:5833. doi:10.1038/srep05833

    CAS  PubMed  Google Scholar 

  • Hasaneen MNA, Younis ME, Tourky SMN (2009) Plant growth, metabolism and adaptation in relation to stress conditions (Lactuca sativa L.). Plant Omics 2:60–69

    CAS  Google Scholar 

  • Hurkman W, Tanaka C (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AM (2002) G-protein-coupled signaling in Arabidopsis. Curr Opin Plant Biol 5:402–407

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkacier M, Erbas M, Uslu MK, Aksu M (2003) Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J Chromatogr Sci 41:331–333

    Article  CAS  PubMed  Google Scholar 

  • Klopffleisch K, Phan N, Augustin K, Bayne RS, Booker KS, Botella JR et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. doi:10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  • Knip M, Hiemstra S, Sietsma A, Castelein M, de Pater S, Hooykaas P (2013) DAYSLEEPER: a nuclear and vesicular-localized protein that is expressed in proliferating tissues. BMC Plant Biol 13:211–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the \( 2^{{ - \Delta \Delta C_{\text{t}} }} \) method. Methods 25: 402–408

  • Mahajan S, Sopory SK, Tuteja N (2006) Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J 273:907–925

    Article  CAS  PubMed  Google Scholar 

  • Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015) Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlet F, Weinstein LS, Goldsmith PK, Rarick T, Hall JL, Bisson JP, de Mazancourt P (1999) Identification and localization of G protein subunits in human spermatozoa. Mol Hum Reprod 5:38–45

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AN, Ismail MR (2011) Changes in organic and inorganic solutes of in vitro tomato cultivars under NaCl stress. Aust J Crop Sci 5:939–944

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Vanlijsebettens M, Kamiya Y, Inze D, Beenster GT (2012) A local maximum in gibberellin levels regulates maize leave growth by spatial control of cell division. Curr Biol 22:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol 46:736–742

    CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmo protectant synthesis pathways. Ann Bot 86:709–716

    Article  CAS  Google Scholar 

  • Roy Choudhury S, Pandey S (2013) Specific subunits of heterotrimeric G-proteins play important roles during nodulation in soybean. Plant Physiol 162:522–533

    Article  Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Sahoo RK, Tuteja N (2012) Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 3:123–128

    Article  PubMed  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Singh V, Singh S, Pandian R, Ellur R, Singh D, Bhowmick P, Krishnan SG, Nagarajan M, Vinod K, Singh U, Prabhu K, Sharma T, Mohapatra T, Singh AK (2012) Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants 2012:pls029. doi:10.1093/aobpla/pls029

  • Subramaniam G, Trusov Y, Lopez-Encina C, Hayashi S, Batley J, Botella JR (2016) Type B heterotrimeric G protein γ subunit regulates auxin and ABA signaling in tomato. Plant Physiol 170:1117–1134

    Article  CAS  PubMed  Google Scholar 

  • Tammam AA, AbouAlhamd MF, Hemeda MM (2008) Study of salt tolerance in wheat (Triticum aestivum L.) cultivar Banysoif 1. Aust J Crop Sci 3:115–125

    Google Scholar 

  • Thomas RJ, Sheena ER (2007) Folding versus aggregation: polypeptide conformations on competing pathway. Arch Biochem Biophys 469:100–117

    Google Scholar 

  • Thung L, Trusov Y, Chakravorty D, Botella JR (2012) Gγ1 + Gγ2 + Gγ3 = Gβ: the search for heterotrimeric G-protein γ subunits in Arabidopsis is over. J Plant Physiol 169:542–545

    Article  CAS  PubMed  Google Scholar 

  • Thung L, Chakravorty D, Trusov Y, Jones A, Botella JR (2013) Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ-subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation. PLoS One 8:e58503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trusov Y, Botella JR (2012) New faces in plant innate immunity: heterotrimeric G-proteins. J Plant Biochem Biotechnol 21:40–47

    Article  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR (2007) Heterotrimeric G protein γ subunits provide functional selectivity in G βγ dimer signaling in Arabidopsis. Plant Cell 19:1235–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127

    CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Huda KMK, Tula S, Tuteja R (2015) OsBAT1 augments salinity stress tolerance by enhancing detoxification of ROS and expression of stress-responsive genes in transgenic rice. Plant Mol Biol Rep 33:1192–1209. doi:10.1007/s11105-014-0827-9

    Article  CAS  Google Scholar 

  • Urano D, Chen JG, Botella JR, Jones AM (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3:120186. doi.10.1098/rsob.120186

  • Yadav DK, Islam S, Tuteja N (2012) Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal Behav 7:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Assmann SM (2015) The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38:2143–2156. doi:10.1111/pce.12542

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dinesh Yadav for his help in initial cloning of RGG1 gene. Work on signal transduction and plant stress signalling in N.T.’s laboratory is partially supported by Department of Science and Technology (DST), Government of India. We thank Dr. Sharat Kumar Pradhan, principal scientist of ICAR-National Rice Research Institute, Cuttack for providing IR64 rice seeds. We thank Dr. Meerambika Mishra for critical review of the manuscript. We do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Additional information

Gene Bank Accession Number of RGG1: GU111573.1; Locus: GU111573.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 185 kb)

Supplementary material 2 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, D.M., Sahoo, R.K., Srivastava, V.K. et al. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta 245, 367–383 (2017). https://doi.org/10.1007/s00425-016-2614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2614-3

Keywords

Navigation