Skip to main content
Log in

Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Brassinosteroid (BR)-regulated growth and development in Arabidopsis depends on BRASSINOSTEROID INSENSITIVE 1 (BRI1), the BR receptor that is responsible for initiating the events of BR signalling. We analysed the temporal and spatial regulation of BRI1 expression using stable transgenic lines that carried BRI1 promoter:reporter fusions. In both seedlings and mature plants the tissues undergoing elongation or differentiation showed elevated BRI1 gene activity, and it could be demonstrated that in the hypocotyl this was accompanied by accumulation of the BRI1 transcript and its receptor protein product. In seedlings the BRI1 promoter was also found to be under diurnal regulation, determined primarily by light repression and a superimposed circadian control. To determine the functional importance of transcriptional regulation we complemented the severely BR insensitive bri1-101 mutant with a BRI1-luciferase fusion construct that was driven by promoters with contrasting specificities. Whereas the BRI1 promoter-driven transgene fully restored the wild phenotype, expression from the photosynthesis-associated CAB3 and the vasculature-specific SUC2 and ATHB8 promoters resulted in plants with varying morphogenic defects. Our results reveal complex differential regulation of BRI1 expression, and suggest that by influencing the distribution and abundance of the receptor this regulation can enhance or attenuate BR signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BR:

Brassinosteroid

BL:

Brassinolide

CS:

Castasterone

DD:

Continuous dark

LD:

Light–dark cycles

LL:

Continuous light

DAG:

Days after germination

LUC:

Firefly luciferase

GUS:

β-Glucuronidase

References

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    PubMed  CAS  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnár G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bancos S, Szatmári A-M, Castle J, Kozma-Bognár L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bishop GJ, Harrison K, Jones JDG (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8:959–969

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761–1766

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Castle J, Szekeres M, Jenkins G, Bishop GJ (2005) Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol Biol 57:129–140

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann K (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Friedrichsen DM, Joazeiro CAP, Li JM, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gou XP, Yin HJ, He K, Du JB, Yi J, Xu SB, Lin HH, Clouse SD, Li J (2012) Genetic evidence for an indispensable role of somatic embryogenesis kinases in brassinosteroid signaling. PLoS Genet 8(10):1371

    Google Scholar 

  • Hategan L, Godza B, Szekeres M (2011) Regulation of brassinosteroid metabolism. In: Hayat S, Amad A (eds) Brassinosteroids: a plant hormone. Springer, Dordrecht, pp 57–81

    Chapter  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone or in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant 128:134–143

    Article  CAS  Google Scholar 

  • Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH (2013) BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 6:456–469

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kang J, Tang J, Donnelly P, Dengler N (2003) Primary vascular pattern and expression of ATHB-8 in shoots of Arabidopsis. New Phytol 158:443–454

    Article  CAS  Google Scholar 

  • Kay SA, Millar AJ, Brandes C, Hall JC (1994) Video imaging of regulated firefly luciferase activity in plants and Drosophila. Promega Notes Mag 49:22–28

    Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Martini N, Szabados L, Hrouda M, Brachmair A, Schell J (1994) Specialized vectors for gene tagging and expression studies. In: Gelvin SB, Schilperoort AR (eds) Plant molecular biology manual, B2. Kluwer, Dordecht, pp 1–22

    Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  PubMed  CAS  Google Scholar 

  • Li J, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:e225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Hiratsuka K, Chua N-H, Kay SA (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10:324–337

    Article  CAS  Google Scholar 

  • Mitra A, Choi HK, An G (1989) Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding protein (cab) promoters. Plant Mol Biol 12:169–179

    Article  PubMed  CAS  Google Scholar 

  • Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning of the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163–3176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Montoya T, Nomura T, Yokota T, Farrar K, Harrison K, Jones JGD, Kaneta T, Kamiya Y, Szekeres M, Bishop GJ (2005) Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J 42:262–269

    Article  PubMed  CAS  Google Scholar 

  • Müssig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133:1261–1271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:e258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem 280:17873–17879

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T (2007) Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol 143:1680–1688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S (2013) Auxin signal transcription factor regulates expression of brassinosteroid receptor gene in rice. Plant J 73:676–688

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, Reid JB (2012) Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot 63:4741–4750

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei G, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Truernit E, Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of β-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570

    Article  PubMed  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133:1643–1653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Esse GW, Westphal AH, Surendran RP, Albrecht C, van Veen B, Borst JW, de Vries SC (2011) Quantification of the BRI1 receptor in planta. Plant Physiol 156:1691–1700

    Article  CAS  Google Scholar 

  • Vert G, Welcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA 105:9829–9834

    Article  PubMed Central  PubMed  Google Scholar 

  • Viczián A, Kircher S (2010) Luciferase and green fluorescent protein reporter genes as tools to determine protein abundance and intracellular dynamics. Methods Mol Biol 555:293–312

    Article  CAS  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1, from the plasma membrane. Science 313:1118–1122

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao T (2012a) Arabidopsis MICROTUBULE DESTABILIZING PROTEIN 40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24:4012–4025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012b) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Xu ZH, Xue HW (2005) Arabidopsis membrane steroid-binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17:116–131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (Grant T 68201) and the ‘BRAVISSIMO’ Marie Curie Initial Training Grant of the European Union. The authors thank Márta Börcsök S. and Mária Tóth S. for their help with preparing the photographic material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklos Szekeres.

Additional information

L. Hategan and B. Godza contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hategan, L., Godza, B., Kozma-Bognar, L. et al. Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis . Planta 239, 989–1001 (2014). https://doi.org/10.1007/s00425-014-2031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2031-4

Keywords

Navigation