Skip to main content

Regulation of brassinosteroid metabolism

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

Brassinosteroids (BRs) participate in the regulation of important physiological processes, such as germination, photomorphogenesis, elongation, and the development of reproductive organs. Unlike other phytohormones, BRs are not subject to active transport within the plant, therefore, their levels are determined by the balance between local biosynthetic and inactivation reactions. BR accumulation shows good correlation with the induction of biosynthetic genes, which are stringently regulated, primarily at the transcriptional level. These genes function under developmental, organ-specific and diurnal control, and respond to homeostatic feedback adjustment. Excess amounts of bioactive BRs are removed by reversible or irreversible inactivation mechanisms. The regulation of BR-inactivating genes is also fairly complex and often opposite to those of the biosynthetic functions. Though many details are yet to be clarified, the known regulatory mechanisms of BR metabolism reveal a finely orchestrated system capable of ensuring optimal BR supply from germination to seed production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asakawa, S., Abe, H., Nishikawa, N., Natsume, M., and Koshioka, M. 1996. Purification and identification of new acyl-conjugated teasterones in lily pollen. Biosci. Biotech. Biochem., 60: 1416–1420.

    Article  CAS  Google Scholar 

  • Azpiroz, R., Wu, Y.W., LoCascio, J.C., and Feldmann, K.A. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell, 10: 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M.Y., Zhang, L.Y., Gampala, S.S., Zhu, S.W., Song, W.Y., Chong, K., and Wang, Z.Y. 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA, 104: 13839–13844.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A. 2007. Metabolism of brassinosteroids in plants. Plant Pysiol. Biochem., 45: 95–107.

    Article  CAS  Google Scholar 

  • Bajguz, A., and Tretyn, A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62: 1023–1046.

    Article  Google Scholar 

  • Bancos, S., Nomura, T., Sato, T., Molnár, G., Bishop, G.J., Koncz, C., Yokota, T., Nagy, F., and Szekeres, M. 2002. Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol., 130: 504–513.

    Article  CAS  PubMed  Google Scholar 

  • Bancos, S., Szatmári, A.M., Castle, J., Kozma-Bognár, L., Shibata, K., Yokota, T., Bishop, G.J., Nagy, F., and Szekeres, M. 2006. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol., 141: 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G.J. 2007. Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci., 12: 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G.J., and Yokota, T. 2001. Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol., 42: 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G.J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D.G., and Kamiya, Y. 1999. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. USA, 96: 1761–1766.

    Article  CAS  PubMed  Google Scholar 

  • Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J., and Chory, J. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131: 5341–5351.

    Article  PubMed  Google Scholar 

  • Castle, J., Szekeres, M., Jenkins, G., and Bishop, G.J. 2005. Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol. Biol., 57: 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S. 2006. Brassinosteroid biosynthesis and inactivation. Physiol. Plant., 126: 539–548.

    Article  CAS  Google Scholar 

  • Choe, S. 2007. Signal-transduction pathways toward the regulation of brassinosteroid biosynthesis. J. Plant Biol., 50: 225–229.

    Article  CAS  Google Scholar 

  • Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A. and Feldmann, K.A. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome-P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 10: 231–243.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K. 2001. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J., 26: 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Fu, F.Q., Mao, W.H., Shi, K., Zhou, Y.H., Asami, T., and Yu, J.Q. 2008. A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot., 59: 2299–2308.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., and Yokota, T. 2003. Biosynthesis and metabolism of brassinosteroids. Ann. Rev. Plant Biol., 54: 137–164.

    Article  CAS  Google Scholar 

  • Fujioka, S., Takatsuto, S., and Yoshida, S. 2002. An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol., 130: 930–939.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, S., Ohnishi, T., Watanabe, B., Yokota, T., Takatsuto, S., Fujioka, S., Yoshida, S., Sakata, K., and Mizutani, M. 2006. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29, sterols. Plant J., 45: 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., and Yoshida, S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 130: 1319–1334.

    Article  CAS  PubMed  Google Scholar 

  • Hardtke, C.S., Dorcey, E., Osmont, K.S., and Sibout, R. 2007. Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends Cell Biol., 17: 485–492.

    Article  CAS  PubMed  Google Scholar 

  • He, J.X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wang, Z.Y. 2005. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307: 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  • Hedden, P., and Phillips, A.L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci., 5: 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, K., Aya, K., Hobo, T., Sakakibara, H., Kojima, M., Shim, R.A., Hasegawa, Y., Ueguchi-Tanaka, M., and Matsuoka, M. 2008. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol., 49: 1429–1450.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y., Uozu, S., Kitano, H., Ashikari, M., and Matsuoka, M. 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J., 32: 495–508.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J.Y., Joo, S.H., Park, C.H., Lee, S.C., and Kim, S.K. 2009. Substrate specificity for cytochrome P450 85A1 and 85A2 in brassinosteroids biosynthesis. Bull. Korean Chem. Soc., 30: 293–294.

    Article  CAS  Google Scholar 

  • Jeong, D.H., Lee, S., Kim, S.L., Hwang, I., and An, G. 2007. Regulation of brassinosteroid responses by Phytochrome B in rice. Plant Cell Environ., 30: 590–599.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J.G., Yun, J., Kim, D.H., Chung, K.S., Fujioka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S., Song, P.S., and Park, C.M. 2001. Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell, 105: 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Katsumata, T., Hasegawa, A., Fujiwara, T., Komatsu, T., Notomi, M., Abe, H., Natsume, M., and Kawaide, H. 2008. Arabidopsis CYP85A2 catalyzes lactonization reactions in the biosynthesis of 2-deoxy-7-oxalactone brassinosteroids. Biosci. Biotech. Biochem., 72: 2110–2117.

    Article  CAS  Google Scholar 

  • Kim, B.K., Fujioka, S., Takatsuto, S., Tsujimoto, M., and Choe, S. 2008. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem. Biophys. Res. Comm., 374: 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G.T., Tsukaya, H., Saito, Y., and Uchimiya, H., 1999. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc. Natl. Acad. Sci. USA, 96: 9433–9437.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G.T., Fujioka, S., Kozuka, T., Tax, F.E., Takatsuto, S., Yoshida, S., and Tsukaya, H., 2005. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J., 41: 710–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C.S., Lee, I., Hwang, I., and Choe, S. 2006. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol., 140: 548–557.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.W., Hwang, J.Y., Kim, Y.S., Joo, S.H., Chang, S.C., Lee, J.S., Takatsuto, S., and Kim, S.K. 2005. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 17: 2397–2412.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, M., Fujioka, S., Jeon, J.H., Kim, H.B., Takatsuto, S., Yoshida, S., An, C.S., and Choe, S. 2005. A double mutant for the CYP85A1 and CYP85A2 genes of Arabidopsis exhibits a brassinosteroid dwarf phenotype. J. Plant Biol., 48: 237–244.

    Article  CAS  Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C., and Chory, J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272: 398–401.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Nam, K.H., Vafeados, D., and Chory, J., 2001. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127: 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Luccioni, L.G., Oliviero, K.A., Yanofsky, M.J., Boccalandro, H.E., and Casal, J.J. 2002. Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiol., 128: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X.W. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 13: 2589–2607.

    Article  CAS  PubMed  Google Scholar 

  • Marsolais, F., Sebastia, C.H., Rousseau, A., and Varin, L. 2004. Molecular and biochemical characterization of BNST4, an ethanol-inducible steroid sulfotransferase from Brassica napus, and regulation of BNST genes by chemical stress and during development. Plant Sci., 166: 1359–1370.

    Article  CAS  Google Scholar 

  • Marsolais, F., Boyd, J., Paredes, Y., Schinas, A.M., Garcia, M., Elzein, S., and Varin, L. 2007. Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta, 225: 1233–1244.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, J., Molnár, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., Adam, G., Voigt, B., Nagy, F., Maas, C., Schell, J., Koncz, C., and Szekeres, M. 1998. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J., 14: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Michael, T.P., Breton, G., Hazen, S.P., Priest, H., Mockler, T.C., Kay, S.A., and Chory, J., 2008. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLOS Biol 6: e225.

    Google Scholar 

  • Mockaitis, K., and Estelle, M. 2004. Integrating transcriptional controls for plant cell expansion. Genome Biology, 5: 245.

    Article  PubMed  Google Scholar 

  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J.G.D., Kaneta, T., Kamiya, Y., Szekeres, M., and Bishop, G.J. 2005. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J., 42: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Mouchel, C.F., Osmont, K.S., and Hardtke, C.S. 2006. BRX mediates feedback between brassinosteroid levels and auxin signaling in root growth. Nature, 443: 458–461.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Satoh, T., Tanaka, S.I., Mochizuki, N., Yokota, T., and Nagatani, A. 2005. Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. J. Exp. Bot. 56: 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., and Chory, J. 1999. BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. USA, 96: 15316–15323.

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser, J.L., Mockler, T.C., and Chory, J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLOS Biol. 2: E258.

    Article  PubMed  Google Scholar 

  • Nemhauser, J.L. 2008. Dawning of a new era: photomorphogenesis as an integrated molecular network. Curr. Opin. Plant Biol., 11: 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E., 1999. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol., 121: 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., and Bishop, G.J. 2006. Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem. Rev., 5: 421–432.

    Article  CAS  Google Scholar 

  • Nomura, T., Sato, T., Bishop, G.J., Kamiya, Y., Takatsuto, S., and Yokota, T. 2001. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry, 57: 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G.J., and Yamaguchi, S. 2005. The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J. Biol. Chem., 280: 17873–17879.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y., and Yokota, T. 2007. Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol., 143: 1680–1688.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi, Y., Nomura, T., Watanabe, B., Ohta, D., Yokota, T., Miyagawa, H., Sakata, K., and Mizutani, M. 2006a. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry, 67: 1895–1906.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi, T., Szatmári, A.M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., and Mizutani, M. 2006b. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell, 18: 3275–3288.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi, T., Bancos, S., Watanabe, B., Fujioka, S., Yokota, T., Sakata, K., Szekeres, M., and Mizutani, M. 2007. Biochemical characterization of brassinosteroid C-3 oxidase. Plant Cell Physiol., 48: S200.

    Google Scholar 

  • Ohnishi, T., Yokota, T., and Mizutani, M. 2009. Insights into the function and evolution of P450s in plant steroid metabolism. Phytochemistry, 70: 1918–1929.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., Michael, T.P., Hudson, M.E., Kay, S.A., Chory, J., and Schuler, M.A. 2009. Cytochrome P450s as reporters for circadian-regulated pathways. Plant Physiol., 150: 858–878.

    Article  CAS  PubMed  Google Scholar 

  • Paponov, I.A., Paponov, M., Teale, W., Menges, M., Chakrabortee, S., Murray, J.A.H., and Palme, K., 2008. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Molec. Plant, 2: 321–337.

    Article  Google Scholar 

  • Park, W., Kim, H.B., Kim, W.T., Park, P.B., An, G., and Choe, S., 2009. Rice bending lamina 2 (bla2) mutants are defective in a cytochrome P450 (CYP734A6) gene predicted to mediate brassinosteroid catabolism. J. Plant Biol., 49: 469–476.

    Article  Google Scholar 

  • Pien, S., Wyrzykowska, J., and Fleming, A.J. 2001. Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. Plant J., 25: 663–674.

    Article  CAS  PubMed  Google Scholar 

  • Pilati, S., Perazzolli, M., Malossini, A., Cestaro, A., Demattè, L., Fontana, P., Dal Ri, A., Viola, R., Velasco, R., Moser, C., 2007. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics, 8: 428.

    Article  PubMed  Google Scholar 

  • Poppenberger, B., Fujioka, S., Soeno, K., George, G.L., Vaistij, F.E., Hiranuma, S., Seto, H., Takatsuto, S., Adam, G., Yoshida, S., and Bowles, D. 2005. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. USA, 102: 15253–15258.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, F.C., Skeffington, A.W., Gardner, M.J., and Webb, A.A.R. 2009. Interactions between circadian and hormonal signaling in plants. Plant Mol. Biol., 69: 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Rouleau, M., Marsolais, F., Richard, M., Nicolle, L., Voigt, B., Adam, G., and Varin, L. 1999. Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J. Biol. Chem., 274: 20925–20930.

    Article  CAS  Google Scholar 

  • Scacchi, E., Osmont, K.S., Beuchat, J., Salinas, P., Navarrete-Gómez, M., Trigueros, M., Ferrándiz, C., and Hardtke, C.S., 2009. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development, 136: 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, Y., Fujioka, S., Miyauchi, N., Kushiro, M., Takatsuto, S., Nomura, T., Yokota, T., Kamiya, Y., Bishop, G.J., and Yoshida, S., 2001. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol., 126: 770–779.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., and Yoshida, S., 2003. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol., 131: 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Sibout, R., Sukumar, P., Hettiarachchi, C., Holm, M., Muday, G.K., and Hardtke, C.S., 2006. Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet., 2: 1898–1911.

    Article  CAS  Google Scholar 

  • Soeno, K., Asakawa, S., Natsume, M., Abe, H., 2000. Reversible conversion between teasterone and its ester conjugates in lily cell cultures. J. Pesticide Sci., 25: 117–122.

    CAS  Google Scholar 

  • Symons, G.M., and Reid, J.B. 2004. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol., 135: 2196–2206.

    Article  CAS  PubMed  Google Scholar 

  • Symons, G.M., Schultz, L., Kerckhoffs, L.H., Davies, N.W., Gregory, D., Reid, J.B., 2002. Uncoupling brassinosteroid levels and de-etiolation in pea. Physiol. Plant., 115: 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., and Thomas, M.R. 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol., 140: 150–158.

    Article  CAS  PubMed  Google Scholar 

  • Szekeres, M., and Bishop, G.J. 2006. Integration of brassinosteroid biosynthesis and signaling. In: P Hedden, S Thomas (Eds), Plant hormone signaling. Annual Plant Reviews, 24. Blackwell, Oxford: pp. 67–92.

    Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G., Nagy, F., Schell, J., and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85: 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, N., Nakazawa, M., Shibata, K., Yokota, T., Ishikawa, A., Suzuki, K., Kawashima, M., Ichikawa, T., Shimada, H., and Matsui, M. 2005. shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene has altered brassinosteroid levels. Plant J., 42: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Asami, T., Yoshida, S., Nakamura, Y., Matsuo, T., and Okamoto, S., 2005. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol., 138: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  • Turk, E.M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M.A., Torres, Q.I., and Neff, M.M., 2003. CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol., 133: 1643–1653.

    Article  CAS  PubMed  Google Scholar 

  • Turk, E.M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Wang, H., Torres, Q.I., Ward, J.M., Murthy, G., Zhang, J., Walker, J.C., and Neff, M.M. 2005. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J., 42: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. 2005. Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol., 21: 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell, 2: 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, S., and Kamiya, Y., 2000. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol., 41: 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, R., Fujioka, S., Iwamoto, K., Demura, T., Takatsuto, S., Yoshida, S., and Fukuda, H. 2007. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol., 48: 74–83.

    Article  PubMed  Google Scholar 

  • Yokota, T., Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., and Takatsuto, S. 2001. Roots and shoots of tomato produce 6-deoxo-28-norcastasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry, 58: 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Guo, X., He, K., Russell, S.D., and Li, J. 2007. BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. Plant J., 51: 220–233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hategan, L., Godza, B., Szekeres, M. (2011). Regulation of brassinosteroid metabolism. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_3

Download citation

Publish with us

Policies and ethics