Skip to main content
Log in

Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Watermelon fruit is traditionally classified as non-climacteric, but it has been reported to be hypersensitive to exogenous ethylene: resulting in accelerated softening and water-soaking. The previous studies have reported a modest, but significant increase in ethylene production in strawberry, grape, etc., which has stimulated interest in exploring the possible role of this hormone in ripening of non-climacteric fruits. In this study, both ethylene emission and content of internal ethylene (CIE) in watermelon fruit were determined, with tomato fruit used as the reference. Throughout the development and ripening, the average CIE levels in flesh was higher than the nearly undetectable ethylene emission from fruits, and revealed a distinct rise of ethylene production in flesh in normal-ripening line 97103, but not in non-ripening line PI296341-FR. In parallel with the patterns of CIE, the activity of 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO) both increased in 97103 flesh as ripening progressed, but stayed at a constant and low level in PI296341-FR flesh. Eight ACS and eight ACO isoforms were identified in watermelon genome by full-length alignment and domain analysis of protein sequences, and among which, four ACS and four ACO genes were selected based on transcriptome profiling of the fruit development for further assay using qPCR. The expression of two ACS isoforms, Cla022653 and Cla011522, as well as two ACO isoforms, Cla014827 and Cla016287, were significantly up-regulated in 97103 flesh during ripening compared with PI296341-FR, indicating that these four genes could potentially play a more important role in ethylene biosynthesis in normal-ripening watermelon flesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1-MCP:

1-Methylcyclopropene

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

ACS:

1-Aminocyclopropane-1-carboxylate synthase

CIE:

Content of internal ethylene

DAP:

Days after pollination

FID:

Flame ionization detector

qPCR:

Quantitative real-time PCR

SAM:

S-Adenosyl-l-methionine

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174. doi:10.1073/pnas.76.1.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aizat WM, Able JA, Stangoulis JCR, Able AJ (2013) Characterisation of ethylene pathway components in non-climacteric capsicum. BMC Plant Biol 13:191–204. doi:10.1186/1471-2229-13-191

    Article  PubMed  PubMed Central  Google Scholar 

  • Arraes FBM, Beneventi MA, Lisei de Sa ME, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213–232. doi:10.1186/s12870-015-0597-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28:94–107. doi:10.1016/j.biotechad-v.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535. doi:10.1046/j.1365-313X.1996.09040525.x

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986. doi:10.1104/pp.123.3.979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böttcher C, Burbidge CA, Boss PK, Davies C (2013) Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol 13:222–235. doi:10.1186/1471-2229-13-222

    Article  PubMed  PubMed Central  Google Scholar 

  • Burg SP, Burg EA (1962) The role of ethylene in fruit ripening. Plant Physiol 37:179–189. doi:10.1104/pp.37.2.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cara B, Giovannoni JJ (2008) Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 175:106–113. doi:10.1016/j.plantsci.2008.03.021

    Article  CAS  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305. doi:10.1016/j.plantsci.2004.06.026

    Article  CAS  Google Scholar 

  • Coombe BG, Hale CR (1973) The hormone content of ripening grape berries and the effect of growth substance treatments. Plant Physiol 51:629–634. doi:10.1104/pp.51.4.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorling SJ, McManus MT (2012) The fate of ACC in higher plants. Annu Plant Rev 44:83–115. doi:10.1002/9781118223086.ch4

    CAS  Google Scholar 

  • Düring H, Alleweldt G, Koch R (1978) Studies on hormonal control of ripening in berries and grape vines. Acta Hortic 80:397–405. doi:10.17660/ActaHortic.80.65

    Article  Google Scholar 

  • Eaks IL (1970) Respiratory response, ethylene production, and response to ethylene of citrus fruit during ontogeny. Plant Physiol 45:334–338. doi:10.1104/pp.45.3.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DCW (2008) Diffeential regulation of four members of ACC-synthase gene family in plum. J Exp Bot 59:2009–3027. doi:10.1093/jxb/ern056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Mattheis JP, Fellman JK (1998) A role for jasmonates in climacteric fruit ripening. Planta 204(4):444–449. doi:10.1007/s004250050278

    Article  CAS  Google Scholar 

  • Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genom 12:454–466. doi:10.1186/1471-2164-12-454

    Article  CAS  Google Scholar 

  • Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY, Zheng Y, Mao LY, Ren Y, Wang ZW, Min JM, Guo XS, Murat F, Ham BK, Zhang ZL, Gao S, Huang MY, Xu YM, Zhong SL, Bombarely A, Mueller LA, Zhao H, He HJ, Zhang Y, Zhang ZH, Huang SW, Tan T, Pang E, Lin K, Hu Q, Kuang HH, Ni PX, Wang B, Liu JA, Kou Q, Hou WJ, Zou XH, Jiang J, Gong GY, Klee K, Schoof H, Huang Y, Hu XS, Dong SS, Liang DQ, Wang J, Wu K, Xia Y, Zhao X, Zheng ZQ, Xing M, Liang XM, Huang BQ, Lv T, Wang JY, Yin Y, Yi HP, Li RQ, Wu MZ, Levi A, Zhang XP, Giovannoni JJ, Jun Wang J, Li YF, Fei ZJ, Xu Y (2012) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58. doi:10.1038/ng.2470

    Article  PubMed  Google Scholar 

  • Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, Jiao C, Zheng Y, Yang W, Fei Z, Xu Y (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10(6):e0130267. doi:10.1371/journal.pone.0130267

    Article  PubMed  PubMed Central  Google Scholar 

  • Iannetta PPM, Laarhovenb LJ, Medina-Escobar N, James EK, McManuse MT, Davies HV, Harren FJM (2006) Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol Plant 127(2):247–259. doi:10.1111/j.1399-3054.2006.00656.x

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199. doi:10.1104/pp.111.177311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kader AA, Saltveit ME (2003) Respiration and gas exchange. In: Bartz JA, Brecht JK (eds) Postharvest physiology and pathology of vegetables. Marcel Dekker, New York, pp 7–29

    Google Scholar 

  • Karakurt Y, Huber D (2002) Cell wall-degrading enzymes and pectin solubility and depolymerization in immature and ripe watermelon (Citrullus lanatus) fruit in response to exogenous ethylene. Physiol Plant 116:398–405. doi:10.1034/j.1399-3054.2002.1160316.x

    Article  CAS  Google Scholar 

  • Karppinen K, Hirvel E, Nevala T, Sipari N, Suokas M, Jaakola L (2013) Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry 95:127–134. doi:10.1016/j.phytochem.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Lagunes PM, Riov J, Weiss D, Goldschmidt EE (2004) Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219(2):243–252. doi:10.1007/s00425-004-1228-3

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Shimokawa K (1994) A simple method for vacuum extraction and quantitative determination of ethylene of excised apple tissues. J Jpn Soc Hortic Sci 63:453–459. doi:10.2503/jjshs.63.453

    Article  CAS  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59. doi:10.1146/annurev-genet-110410-132507

    Article  CAS  PubMed  Google Scholar 

  • Koyama K, Sadamatsu K, Yamamoto NG (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10:367–381. doi:10.1007/s10142-009-0145-8

    Article  CAS  PubMed  Google Scholar 

  • Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech JC, Balague C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251:81–90. doi:10.1007/BF02174348

    CAS  PubMed  Google Scholar 

  • Lee SG, Ko KD (2008) Ethephon application induces symptoms of fruit tissue degeneration in watermelon. J Plant Biol 51(5):337–340. doi:10.1007/BF03036135

    Article  CAS  Google Scholar 

  • Leshem YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria ananassa (Duch.) and avocados Persea americana (Mill.). J Exp Bot 51:1471–1473. doi:10.1093/jexbot/51.349.1471

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li P, Sun L, Wang YP, Ji K, Sun YF, Dai SJ, Chen P, Duan CR, Leng P (2012) Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol 169:78–85. doi:10.1016/j.jplph.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336. doi:10.1093/jxb/erp204

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Guo S, He H, Zhang H, Gong G, Ren Y, Xu Y (2013a) Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiol Plant 35:3213–3222. doi:10.1007/s11738-013-1356-0

    Article  CAS  Google Scholar 

  • Liu J, He H, Guo S, Zhang H, Ren Y, Gong G, Xu Y (2013b) Physiological and biochemical mechanism for watermelon fruit ripening and softening. J Fruit Sci 30(5):813–818 (in Chinese)

    CAS  Google Scholar 

  • Lyons JM, McGlasson WB, Pratt HK (1962) Ethylene production, respiration and internal gas concentration in cantaloupe fruits at various stages of maturity. Plant Physiol 37:31–36. doi:10.1104/pp.37.1.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Karakurt Y, Huber D (2004) Incidence of water-soaking and phospholipid catabolism in ripe watermelon (Citrullus lanatus) fruit: induction by ethylene and prophylactic effects of 1-methylcyclopropene. Postharvest Biol Technol 33:1–9. doi:10.1016/j.postharvbio.2003.12.007

    Article  CAS  Google Scholar 

  • Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V (2013) Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot 64(14):4421–4439. doi:10.1093/jxb/ert257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minas IS, Tanou G, Karagiannis E, Belghazi M, Molassiotis A (2016) Coupling of physiological and proteomic analysis to understand the ethylene- and chilling-induced Kiwifruit ripening syndrome. Front Plant Sci 7:120. doi:10.3389/fpls.2016.00120

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:2002–2007. doi:10.1093/nar/29.9.e45

    Article  Google Scholar 

  • Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genom 8(1):428–449. doi:10.1186/1471-2164-8-428

    Article  Google Scholar 

  • Salman-Minkov A, Levi A, Wolf S, Trebitsh T (2008) ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol 49:740–750. doi:10.1093/pcp/pcn045

    Article  CAS  PubMed  Google Scholar 

  • Shiomi S, Yamamoto M, Nakamura R, Inaba A (1999) Expression of ACC synthase and ACC oxidase genes in melons harvested at different stages of maturity. J Jpn Soc Hortic Sci 68:10–17. doi:10.2503/jjshs.68.10

    Article  CAS  Google Scholar 

  • Solomos T (1987) Principles of gas exchange in bulky plant tissue. HortScience 22:766–771

    Google Scholar 

  • Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK, Molassiotis A (2015) The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. Ann Bot 116:649–662. doi:10.1093/aob/mcv107

    Article  PubMed  PubMed Central  Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046. doi:10.1093/jxb/eri202

    Article  CAS  PubMed  Google Scholar 

  • Tucker GA (1993) Introduction. In: Seymour G, Talor J, Tucker G (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 1–51

    Chapter  Google Scholar 

  • Vijay P, Rakesh P, Girish CS (2012) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene. J Food Sci Technol 49:1–21. doi:10.1007/s13197-011-0293-4

    Article  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at tomato Ripening-inhibitor (Rin) locus. Science 296:343–346. doi:10.1126/science.1068181

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang H, Huang X (2007) Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul 52(3):189–198. doi:10.1007/s10725-007-9189-8

    Article  CAS  Google Scholar 

  • Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, Giovannoni JJ, Salman-Minkov A, Hernandez A, Thimmapuram J, Tadmor Y, Portnoy V, Trebitsh T (2008) Gene expression in developing watermelon fruit. BMC Genom 9:275–287. doi:10.1186/1471-2164-9-275

    Article  Google Scholar 

  • Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, Nakano R, Kubo Y, Inaba A (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Technol 44:220–227. doi:10.1016/j.postharvbio.2006.12.010

    Article  CAS  Google Scholar 

  • Yang S, Hoffman N (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189. doi:10.1146/annurev.pp.35.060184.001103

    Article  CAS  Google Scholar 

  • Zagory D, Kader AA (1988) Modified atmosphere packaging of fresh produce. Food Technol 42:70–77

    Google Scholar 

  • Zhang J, Gong G, Guo S, Ren Y, Zhang H, Xu Y (2014) Fine mapping of the flesh color controlling genes in watermelon (Citrullus lanatus). In: Havey M, Weng Y, Day B, Grumet R (eds) Proceedings of Cucurbitaceae 2014, Bay Harbor, pp 111–116

  • Ziliotto F, Corso M, Rizzini FM, Rasori A, Botton A, Bonghi C (2012) Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin and ethylene-related genes. BMC Plant Biol 12:185–199. doi:10.1186/1471-2229-12-185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorrilla-Fontanesi Y, Rambla JL, Cabeza A, Medina JJ, Sanchez-Sevilla JF, Valpuesta V, Botella MA, Granell A, Amaya I (2012) Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol 159:851–870. doi:10.1104/pp.111.188318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (31361140355, 31401893, 3172184, 2013BAD01B04, and 2014BAD01B09), the Ministry of Agriculture of the People’s Republic of China (CARS-26), the Beijing Municipal Science and Technology Commission of China (6141001, Z141100002314019), the Beijing Scholar Program and Beijing Excellent Talents Program (2014000021223TD03, 2014000020060G176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Additional information

Communicated by P. K. Nagar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Guo, S., Zhang, J. et al. Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits. Acta Physiol Plant 38, 228 (2016). https://doi.org/10.1007/s11738-016-2248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2248-x

Keywords

Navigation