Skip to main content
Log in

Regulation of anthocyanin biosynthesis by nitrogen in TTG1–GL3/TT8–PAP1-programmed red cells of Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Nitrogen nutrients can regulate anthocyanin biosynthesis in Arabidopsis thaliana. In this investigation, we report the nitrogen regulation of anthocyanin biosynthesis activated by TTG1–GL3/TT8–PAP1 in red pap1-D cells. To understand the mechanisms of nitrogen regulation, we employed red pap1-D cells and wild-type cells (as a control) to examine the effects of different nitrogen treatments on anthocyanin biosynthesis. In general, the higher concentrations of ammonium and high total nitrogen tested (e.g., 58.8 and 29.8 mM total nitrogen consisting of NH4NO3 and KNO3) reduced the levels and molecular diversity of anthocyanins; in contrast, the lower concentrations of ammonium and total nitrogen conditions (e.g., 9.4 mM KNO3 and the depletion of nitrogen) increased the levels and molecular diversity of anthocyanins. An expression analysis of the main regulatory and pathway genes showed that at conditions of higher concentrations of ammonium and total nitrogen, the expression levels of PAP1 and TT8 decreased, but the expression levels of LBD37, 38 and 39, three negative regulators of anthocyanin biosynthesis, increased. In addition, the expression levels of the main pathway genes decreased. In contrast, at conditions of lower concentrations of ammonium and total nitrogen, the expression levels of PAP1, TT8 and the main pathway genes increased, whereas those of LBD37, 38 and 39 decreased. These results show that nitrogen regulation of anthocyanin biosynthesis in red cells undergoes a mechanism by which nitrogen controls the expression of genes encoding both main components of the TTG1–GL3/TT8–PAP1 complex and negative regulators. Based on these observations, we propose that the regulatory mechanism of nitrogen may occur via two pathways to control the expression of genes encoding positive and negative regulators in red pap1-D cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

KT:

Kinetin

pap1-D :

Production of anthocyanin pigmentation 1-Dominant

MS medium:

Murashige and Skoog medium (1962)

GL3 :

Glabra 3

TTG1 :

Transparent Testa Glabra 1

TT8 :

Transparent Testa 8

References

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291–298

    Article  PubMed  CAS  Google Scholar 

  • Blank F (1947) The anthocyanin pigments of plants. Bot Rev 13:241–317

    Article  CAS  Google Scholar 

  • Bloor SJ, Abrahams S (2002) The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59:343–346

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed  CAS  Google Scholar 

  • Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894

    Article  PubMed  CAS  Google Scholar 

  • Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19:387–398

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Gourrierec JL, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J-M, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  PubMed  CAS  Google Scholar 

  • Feyissa D, Løvdal T, Olsen K, Slimestad R, Lillo C (2009) The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747–754

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Develop Bio 325:412–421

    Article  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor. Plant Cell 23:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Ann Rev Plant Biol 57:761–780

    Article  CAS  Google Scholar 

  • Harborne JB, Baxter H (1999) Anthocyanins. In: Harborne JB, Baxter H (eds) The handbook of natural flavonoids. John Wiley & Sons, Chichester, pp 1–115

  • Harborne JB, Grayer RJ (1988) The anthocyanins. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman and Hall Ltd, London, pp 1–20

    Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    PubMed  CAS  Google Scholar 

  • Keegan PQ (1899) Experiments on the floral colours. Nature 61:105–106

    Article  Google Scholar 

  • Lea U, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Ann Rev Plant Biol 57:405–430

    Article  CAS  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55:954–967

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix–loop–helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    PubMed  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    PubMed  CAS  Google Scholar 

  • Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi Y-M, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59:2933–2944

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim O (1920) Observations on anthocyanins. I: the anthocyanins of the young leaves of the grape vine. Biochem J 14:178–188

    PubMed  CAS  Google Scholar 

  • Rowan DD, Cao M, Kui L-W, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling C, Hellens RP, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  PubMed  CAS  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible W-R (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  PubMed  CAS  Google Scholar 

  • Shi M-Z, Xie D-Y (2010) Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta 231:1385–1400

    Article  PubMed  CAS  Google Scholar 

  • Shi MZ, Xie DY (2011) Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta 233:787–805

    Article  PubMed  CAS  Google Scholar 

  • Springob K, Nakajima H, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  PubMed  CAS  Google Scholar 

  • Timberlake CF, Bridle P (1975) The anthocyanins. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Academic Press, New York, pp 214–266

    Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Wheldale M (1911) On the formation of anthocyanin. J Genetics 1:133–158

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Xie D-Y, Shi M-Z (2012) Differentiation of programmed Arabidopsis cells. Bioeng Bugs 3:54–59

    Article  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  PubMed  CAS  Google Scholar 

  • Zhou L-L, Zeng H-N, Shi M-Z, Xie D-Y (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Dr. Richard A. Dixon to celebrate his 60th birthday. This work was supported by funds from the USDA (2006-35318-17431) and North Carolina State University startup. We are grateful to Dr. Christophe La Hovary for correcting the English grammar in the manuscript and for his kind suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yu Xie.

Additional information

A contribution to the Special Issue on Metabolic Plant Biology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S-Table 1 (DOCX 19 kb)

S-Figure (JPG 623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, LL., Shi, MZ. & Xie, DY. Regulation of anthocyanin biosynthesis by nitrogen in TTG1–GL3/TT8–PAP1-programmed red cells of Arabidopsis thaliana . Planta 236, 825–837 (2012). https://doi.org/10.1007/s00425-012-1674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1674-2

Keywords

Navigation