Skip to main content

Advertisement

Log in

Histochemical study of trans-polyisoprene accumulation by spectral confocal laser scanning microscopy and a specific dye showing fluorescence solvatochromism in the rubber-producing plant, Eucommia ulmoides Oliver

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A microscopic technique combining spectral confocal laser scanning microscopy with a lipophilic fluorescent dye, Nile red, which can emit trans-polyisoprene specific fluorescence, was developed, and unmixed images of synthesized trans-polyisoprene in situ in Eucommia ulmoides were successfully obtained. The images showed that trans-polyisoprene was initially synthesized as granules in non-articulated laticifers that changed shape to fibers during laticifer maturation. Non-articulated laticifers are developed from single laticiferous cells, which are differentiated from surrounding parenchyma cells in the cambium. Therefore, these observations suggested that trans-polyisoprene biosynthesis first started in laticifer cells as granules and then the granules accumulated and fused in the inner space of the laticifers over time. Finally, laticifers were filled with the synthesized trans-polyisoprene, which formed a fibrous structure fitting the laticifers shape. Both trans- and cis-polyisoprene are among the most important polymers naturally produced by plants, and this microscopic technique combined with histological study should provide useful information in the fields of plant histology, bioindustry and phytochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SCLSM:

Spectral confocal laser scanning microscopy

SEC:

Size exclusion chromatography

References

  • Bamba T, Fukusaki E, Nakazawa Y, Kobayashi A (2002) In-situ chemical analyses of trans-polyisoprene by histochemical staining and fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215:934–939

    Article  PubMed  CAS  Google Scholar 

  • Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides Oliver. Z Naturforsch C 65:363–372

    PubMed  CAS  Google Scholar 

  • Cornish K, Backhaus RA (1990) Rubber transferase activity in rubber particles of guayule. Phytochemistry 29:3809–3813

    Article  CAS  Google Scholar 

  • Cornish K, Wood DF, Windle JJ (1999) Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210:85–96

    Article  PubMed  CAS  Google Scholar 

  • Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J Biol Chem 264:18608–18617

    PubMed  CAS  Google Scholar 

  • Dussourd DE, Eisner T (1987) Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237:898–901

    Article  PubMed  CAS  Google Scholar 

  • Enoki M, Doi Y, Iwata T (2003) Oxidative degradation of cis- and trans-1,4-polyisoprenes and vulcanized natural rubber with enzyme-mediator systems. Biomacromolecules 4:314–320

    Article  PubMed  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Fowler SD, Greenspan P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33:833–836

    Article  PubMed  CAS  Google Scholar 

  • Genicot G, Leroy JL, Soom AV, Donnay I (2005) The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63:1181–1194

    Article  PubMed  CAS  Google Scholar 

  • Gorenflo V, Steinbüchel A, Marose S, Rieseberg M, Scheper T (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Appl Microbiol Biotechnol 51:765–772

    Article  PubMed  CAS  Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe nile red. J Lipid Res 26:781–789

    PubMed  CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  PubMed  CAS  Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639

    Article  PubMed  CAS  Google Scholar 

  • Hanaichi T, Sato T, Iwamoto T, Malavasi-Yamashiro J, Hoshino M, Mizuno N (1986) A stable lead by modification of Sato’s method. J Electron Microsc 35:304–306

    CAS  Google Scholar 

  • Hendricks SB, Wildman SG, Jones EJ (1946) Differentiation of rubber and gutta hydrocarbons in plant materials. Rubber Chem Technol 19:501–509

    Article  CAS  Google Scholar 

  • Hillebrand A, Post JJ, Wurbs D, Wahler D, Lenders M, Krzyzanek V, Prüfer D, Gronover CS (2012) Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum. PLoS One 7:e41874

    Article  PubMed  CAS  Google Scholar 

  • Hu SY (1979) A contribution to our knowledge of tu-chung-Eucommia ulmoides. Am J Chin Med 7:5–37

    Article  PubMed  CAS  Google Scholar 

  • Kent EG, Swinney FB (1966) Properties and application of trans-1,4-polyisoprene. Ind Eng Chem Prod Res Dev 5:134–138

    Article  CAS  Google Scholar 

  • Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492

    Article  PubMed  CAS  Google Scholar 

  • Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  PubMed  CAS  Google Scholar 

  • Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378

    Article  PubMed  CAS  Google Scholar 

  • Larson JM (2006) The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A 69:825–834

    PubMed  Google Scholar 

  • Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  • Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa Y, Bamba T, Takeda T, Uefujil H, Harada Y, Li X, Chen R, Inoue S, Tutumi M, Shimizu T, Su YQ, Gyokusen K, Fukusaki E, Kobayashi A (2009) Production of Eucommia-rubber from Eucommia ulmoides Oliv. (Hardy Rubber Tree). Plant Biotechnol 26:71–79

    Article  CAS  Google Scholar 

  • Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf A 390:157–166

    Article  CAS  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888

    Article  PubMed  Google Scholar 

  • Pinzon NM, Aukema KG, Gralnick JA, Wackett LP (2011) Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format. mBio 2:e00109–e00111

    Article  PubMed  CAS  Google Scholar 

  • Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Roth WB, Carr ME, Davis EA, Bagby MO (1985) New sources of gutta-percha in Garrya flavescens and G. wrightii. Phytochemistry 24:183–184

    Article  CAS  Google Scholar 

  • Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A (2009) Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230:215–225

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tanaka Y (1979) 1H-NMR study of polyisoprenes. J Polym Sci Polym Chem Ed 17:3551–3558

    Article  CAS  Google Scholar 

  • Schlesinger W, Leeper HM (1951) Chicle cis- and trans-polyisoprenes from a single plant species. Ind Eng Chem 43:398–403

    Article  CAS  Google Scholar 

  • Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O, Reichelt R, Eisenreich W, Fischer R, Prüfer D, Gronover CS (2010) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11:11

    Article  PubMed  Google Scholar 

  • Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G (2010) Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 285:6127–6133

    Article  PubMed  CAS  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Uefuji H, Nishikawa T, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Bamba T, Fukusaki EI, Kobayashi A, Ogata Y, Sakurai N, Suzuki H, Shibata D, Nakazawa Y (2012) Construction and analysis of EST libraries of the trans-polyisoprene producing plant, Eucommia ulmoides Oliver. Planta 236:1405–1417

    Article  PubMed  CAS  Google Scholar 

  • Tangpakdee J, Tanaka Y, Shiba KI, Kawahara S, Sakurai K, Suzuki Y (1997) Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry 45:75–80

    Article  CAS  Google Scholar 

  • van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529

    Article  PubMed  Google Scholar 

  • Wahler D, Colby T, Kowalski NA, Harzen A, Wotzka SY, Hillebrand A, Fischer R, Helsper J, Schmidt J, Schulze Gronover C, Prüfer D (2012) Proteomic analysis of latex from the rubber-producing plant Taraxacum brevicorniculatum. Proteomics 12:901–905

    Article  PubMed  CAS  Google Scholar 

  • Weiss FE (1891) VIII. The caoutchouc-containing cells of Eucommia ulmoides Oliver. Transactions of the Linnean Society of London. 2nd Series: Botany 3:243–254

  • Weiss TL, Chun HJ, Okada S, Vitha S, Holzenburg A, Laane J, Devarenne TP (2010) Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J Biol Chem 285:32458–32466

    Article  PubMed  CAS  Google Scholar 

  • Wimalaratna SD (1973) A staining procedure for latex vessels of Hevea. Stain Technol 48:219–221

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Nakazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, Y., Takeda, T., Suzuki, N. et al. Histochemical study of trans-polyisoprene accumulation by spectral confocal laser scanning microscopy and a specific dye showing fluorescence solvatochromism in the rubber-producing plant, Eucommia ulmoides Oliver. Planta 238, 549–560 (2013). https://doi.org/10.1007/s00425-013-1912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1912-2

Keywords

Navigation