Skip to main content
Log in

Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

This work describes autofluorescence of the mycelium of the dry rot fungus Serpula lacrymans grown on spruce wood blocks impregnated with various metals. Live mycelium, as opposed to dead mycelium, exhibited yellow autofluorescence upon blue excitation, blue fluorescence with ultraviolet (UV) excitation, orange-red and light-blue fluorescence with violet excitation, and red fluorescence with green excitation. Distinctive autofluorescence was observed in the fungal cell wall and in granula localized in the cytoplasm. In dead mycelium, the intensity of autofluorescence decreased and the signal was diffused throughout the cytoplasm. Metal treatment affected both the color and intensity of autofluorescence and also the morphology of the mycelium. The strongest yellow signal was observed with blue excitation in Cd-treated samples, in conjunction with increased branching and the formation of mycelial loops and protrusions. For the first time, we describe pink autofluorescence that was observed in Mn-, Zn-, and Cu-treated samples with UV, violet or. blue excitation. The lowest signals were obtained in Cu- and Fe-treated samples. Chitin, an important part of the fungal cell wall exhibited intensive primary fluorescence with UV, violet, blue, and green excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Baldrian P (2010) Effect of heavy metals on saprotrophic soil fungi. In: Sherameti I, Varma A (eds) Soil heavy metals. Soil biology, vol 19. Springer, New York, pp 263–279

    Chapter  Google Scholar 

  • Baldrian P, Gabriel J (1997) Effect of heavy metals on the growth of selected wood-rotting basidiomycetes. Folia Microbiol 42:521–523

    Article  CAS  Google Scholar 

  • Baldrian P, Gabriel J, Nerud F (1996) Effect of cadmium on the ligninolytic activity of Stereum hirsutum and Phanerochaete chrysosporium. Folia Microbiol 41:363–367

    Article  CAS  Google Scholar 

  • Cole L, Hyde G, Ashford A (1997) Uptake and compartmentalisation of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma 199:18–29

    Article  CAS  Google Scholar 

  • Costa-de-Oliveira S, Silva AP, Miranda IM, Salvador A, Azevedo MM, Carol A, Munro CA, Rodrigues AG, Pina-Vaz C (2013) Determination of chitin content in fungal cell wall: an alternative flow cytometric metod. Cytometry A 83A:324–328

    Article  CAS  Google Scholar 

  • Čurdová E, Vavrušková L, Suchánek M, Baldrian P, Gabriel J (2004) ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta 62:483–487

    Article  PubMed  Google Scholar 

  • Darlington AB, Rauser WE (1988) Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus—a new growth model accounts for changes in branching. Can J Bot 66:225–229

    Article  CAS  Google Scholar 

  • Dreyer B, Morte A (2009) Use of autofluorescence properties of AM fungi for AM assessment and handling. In: Varma A, Kharkwal AC (eds) Symbiotic fungi. Soil biology 18. Springer, Heidelberg, pp 123–140

    Chapter  Google Scholar 

  • Dreyer B, Morte A, Pérez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887–897

    Article  PubMed  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, Vries DPR, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee Y-H, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    Article  CAS  PubMed  Google Scholar 

  • Feofilova EP (2010) The fungal cell wall: modern concepts of its composition and biological function. Microbiology 79:711–720

    Article  CAS  Google Scholar 

  • Feofilova EP, Tereshina VM, Ivanova NI, Genin YV, Gopepgauz FL (1980) Comparative investigation of the physicochemical properties of chitin from crustaceans and some microscopic fungi. Prikl Biokhim Mikrobiol 24:377–380

    Google Scholar 

  • Gabriel J, Mokrejš M, Bílý J, Rychlovský P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118

    Article  CAS  Google Scholar 

  • Gabriel J, Kofroňová O, Rychlovský P, Krenželok M (1996) Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ Contam Toxicol 57:383–390

    Article  CAS  PubMed  Google Scholar 

  • Gabriel J, Baldrian P, Rychlovský P, Krenželok M (1997) Heavy metal content in wood-decaying fungi collected in Prague and in the National Park Šumava in the Czech Republic. Bull Environ Contam Toxicol 59:595–602

    Article  CAS  PubMed  Google Scholar 

  • Galland P, Tölle N (2003) Light-induced fluorescence changes in Phycomyces: evidence for blue-light receptor associated flavo-semiquinones. Planta 217:971–982

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb Z, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowity AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katyir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homeoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham AR (1983) Fungal autofluorescence with ultraviolet illumination. Am J Clin Pathol 79:231–234

    CAS  PubMed  Google Scholar 

  • King EJ, Brown MF (1983) A technique for preserving aerial fungal structures for scanning electron microscopy. Can J Microbiol 29:653–658

    Article  CAS  PubMed  Google Scholar 

  • Klionski DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function and biogenesis. Microbiol Mol Biol Rev 54:266–292

    Google Scholar 

  • Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualization of soil microorganisms—a review. Biol Fertil Soils 39:301–311

    Article  Google Scholar 

  • Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium absorption and its effects on growth and mycelial morphology of the basidiomycete fungus, Schizophyllum commune. Microbios 72:227–237

    CAS  Google Scholar 

  • Lin SJ, Tan HY, Kuo CJ, Wu RJ, Wang SH, Chen WL, Jee SH, Dong CY (2009) Multiphoton autofluorescence spectral analysis for fungus imaging and identification. Appl Phys Lett 95:043703, http://dx.doi.org/10.1063/1.3189084

    Article  Google Scholar 

  • Mandal TK, Baldrian P, Gabriel J, Nerud F, Zadrazil F (1998) Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere 36:435–440

    Article  CAS  Google Scholar 

  • Maurice S, Coroller L, Debaets S, Vasseur V, Le Floch G, Barbier G (2011) Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans. J Appl Microbiol 111:1436–1446

    Article  CAS  PubMed  Google Scholar 

  • Muraleedharan TR, Ivengar L, Venkobachar C (1995) Screening of tropical wood-rotting mushrooms for copper biosorption. Appl Environ Microbiol 61:3507–3508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao S, Rajkumar A, Ehtesham M, Prathiba D (2008) Autofluorescence: a screening test for mycotic infection in tissues. Indian J Pathol Microbiol 51:215–217

    Article  PubMed  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Schilling JS (2010) Effects of calcium-based materials and iron impurities on wood degradation by the brown rot fungus Serpula lacrymans. Holzforschung: Internat J Biol Chem Phys Technol Wood 64:93–99

    Article  CAS  Google Scholar 

  • Sedarati MR, Keshavarz T, Leontievsky AA (2003) Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh. Electron J Biotechnol 6:2. doi:10.2225/vol6-issue2-fulltext-7

    Google Scholar 

  • Susi P, Aktuganov G, Himanen J, Korpela T (2011) Biological control of wood decay against fungal infection. J Environ Management 92:1681–1689

    Article  Google Scholar 

  • Tanabe S, Nishizawa Y, Minami E (2009) Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol Plant 137:148–154

    Article  CAS  PubMed  Google Scholar 

  • Tyler G (1982) Metal accumulation by wood-decaying fungi. Chemosphere 11:1141–1146

    Article  CAS  Google Scholar 

  • Watkinson SC, Eastwood DC (2012) Serpula lacrymans, wood and buildings. Adv Appl Microbiol 78:121–149

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li Q (2002) Biosorption of lead by Phanerochaete chrysosporium in the form of pellets. J Environ Sci 14:108–114

    CAS  Google Scholar 

  • Wu CH, Waren HL (1984) Induced autofluorescence in fungi and its correlation with viability: potential application of fluorescence microscopy. Phytopathology 74:1353–1358

    Article  Google Scholar 

  • Wu CH, Warren HL (1984) Natural autofluorescence in fungi, and its correlation with viability. Mycologia 76:1049–1058

    Article  Google Scholar 

  • Wurzbacher C, Grossart H-P (2012) Improved detection and identification of aquatic fungi and chitin in aquatic environment. Mycologia 104:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Žižka Z (2012) Simple sets for digital microphotography used and tested in the study of microorganisms. Folia Microbiol 57:509–512

    Article  Google Scholar 

  • Žižka Z, Gabriel J (2006) Primary fluorescence (autofluorescence) of fruiting bodies of the wood-rotting fungus Fomes fomentarius. Folia Microbiol 51:109–113

    Article  Google Scholar 

  • Žižka Z, Gabriel J (2008) Autofluorescence of the fruiting body of the fungus Macrolepiota rhacodes. Folia Microbiol 53:537–539

    Article  Google Scholar 

  • Žižka Z, Gabriel J (2011) Autofluorescence of the fungus Morchella conica var. rigida. Folia Microbiol 56:166–169

    Article  Google Scholar 

  • Žižka Z, Větrovský T, Gabriel J (2010) Enhancement of autofluorescence of the brown-rot fungus Piptoporus betulinus by metal ions. Folia Microbiol 55:625–628

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by RVO 61388971 (Institute of Microbiology, ASCR, v.v.i., Prague) and by Thermo Sanace s.r.o., Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Gabriel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, J., Žižka, Z., Švec, K. et al. Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood. Folia Microbiol 61, 119–128 (2016). https://doi.org/10.1007/s12223-015-0415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0415-x

Keywords

Navigation