Skip to main content
Log in

Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Accelerated aging

ANN:

Annexin

CHAPS:

3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate

Cys:

Cysteine

DCFH-DA:

2′,7′-Dichlorofluorescein-diacetate

DTT:

Dithiothreitol

ECL:

Enhanced chemiluminescence

EDTA:

Ethylenediaminetetraacetic acid

H2O2 :

Hydrogen peroxide

IPTG:

Isopropyl-β-thiogaloctopyranoside

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry

PMSF:

Phenylmethylsulfonyl fluoride

RH:

Relative humidity

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

Tyr:

Tyrosine

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Avusoglu K, Kabar K (2010) Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. EurAsia J BioSci 4:70–79

    Article  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Berridge MV, Tan AS, Mccoy KD, Wang R (1996) The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4:14–19

    Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larre C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Breton G, Vazquez-Tello A, Danyluk J, Sarhan F (2000) Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol 41:177–184

    Article  PubMed  CAS  Google Scholar 

  • Buitink J, Leger JJ, Guisle I, Vu BL, Wuillème S, Lamirault G, Bars AL, Meur NL, Becker A, Küster H (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccation tolerant stages in Medicago truncatula seeds. Plant J 47:735–750

    Article  PubMed  CAS  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Burke JJ, Velten J, Xin Z (2006) FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J 48:73–84

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842

    Article  CAS  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  PubMed  CAS  Google Scholar 

  • Clark G, Konopka-Postupolska D, Hennig J, Roux S (2010) Is annexin 1 a multifunctional protein during stress responses? Plant Signal Behav 5:303–307

    Article  PubMed  CAS  Google Scholar 

  • Deora AB, Kreitzer G, Jacovina AT, Hajjar KA (2004) An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J Biol Chem 279:43411–43418

    Article  CAS  Google Scholar 

  • Ding Y, Cheng H, Song S (2008) Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Sci China C Life Sci 51:842–853

    Article  PubMed  CAS  Google Scholar 

  • Draeger A, Monastyrskaya K, Babiychuk EB (2011) Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol 81:703–712

    Article  PubMed  CAS  Google Scholar 

  • Elegbede AI, Srivastava DK, Hinderliter A (2006) Purification of recombinant annexins without the use of phospholipids. Protein Expr Purif 50:157–162

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: Linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  PubMed  CAS  Google Scholar 

  • Gidrol X, Sabelli PA, Fern YS, Kush AK (1996) Annexin-like protein from Arabidopsis thaliana rescues ΔoxyR mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci USA 93:11268–11273

  • Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S (2005) Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun 336:868–875

    Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–76

    Article  CAS  Google Scholar 

  • Hegarty TW (1978) The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant Cell Environ 1:101–119

    Article  Google Scholar 

  • Hilhorst HWM, Toorop P (1997) Review on dormancy, germinability, and germination in crop and weed seeds. Adv Agron 61:111–165

    Article  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hofmann A, Delmer DP, Wlodawer A (2003) The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S-3 cluster—implications for cellulose synthase complex formation and oxidative stress response. Eur J Biochem 270:2557–2564

    Article  PubMed  CAS  Google Scholar 

  • Huh SM, Noh EK, Kim HG, Jeon BW, Bae K, Hu HC, Kwak JM, Park OK (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol 51:1499–1514

    Article  PubMed  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Ji M, Lee A, Killens R, Grunden AM, Boss WF (2009) Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol 151:893–904

    Article  PubMed  CAS  Google Scholar 

  • Irar S, Oliveira E, Pagès M, Goday A (2006) Towards the identification of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics 6:S175–S185

    Article  PubMed  Google Scholar 

  • Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    Article  PubMed  CAS  Google Scholar 

  • Khan MM, Hendry GAF, Atherton NM, Vertucci-Walters CW (1996) Free radical accumulation and lipid peroxidation in testas of rapidly aged soybean seeds: a light-promoted process. Seed Sci Res 6:101–107

    Article  CAS  Google Scholar 

  • Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res 8:3598–3605

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Alam I, Lee KW, Sharmin SA, Kwak SS, Lee SY, Lee BH (2010) Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32:571–576

    Article  PubMed  CAS  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu GH (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  PubMed  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2009) Multifunctional annexins. Plant Sci 177:532–539

    Article  CAS  Google Scholar 

  • Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA, Macpherson N, Brownlee C, Hofmann A, Webb AA, Miedema H, Battey NH, Davies JM (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21:479–493

    Article  PubMed  CAS  Google Scholar 

  • Laohavisit A, Brown AT, Cicuta P, Davies JM (2010) Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol 152:1824–1829

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  PubMed  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • McDonald MB (2004) Orthodox seed deterioration and its repair. In: Benech-Arnold RL, Sanchez RA (eds) Handbook of seed physiology: applications to agriculture. The Haworth Press, New York, pp 273–304

    Google Scholar 

  • Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2:2348–2353

    Article  PubMed  CAS  Google Scholar 

  • Mohammad A, Miranda-Rios J, Navarrete GE, Quinto C, Olivares JE, Garcia-Ponce B, Sanchez F (2004) Nodulin 22 from Phaseolus vulgaris protects Escherichia coli cells from oxidative stress. Planta 219:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Monastyrskaya K, Babiychuk EB, Hostettler A, Rescher U, Draeger A (2007) Annexins as intracellular calcium sensors. Cell Calcium 41:207–219

    Article  PubMed  CAS  Google Scholar 

  • Monastyrskaya K, Babiychuk EB, Draeger A (2009) The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 66:2623–2642

    Article  PubMed  CAS  Google Scholar 

  • Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM (2008) Annexins: multifunctional components of growth and adaptation. J Exp Bot 59:533–544

    Article  PubMed  CAS  Google Scholar 

  • Mortimer JC, Coxon KM, Laohavisit A, Davies JM (2009) Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. Plant Signal Behav 4:428–430

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nair S, Hande MP, Lim LHK (2010) Annexin-1 protects MCF7 breast cancer cells against heat-induced growth arrest and DNA damage. Cancer Lett 294:111–117

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621–1633

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Oge L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair l-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20:3022–3037

    Article  PubMed  CAS  Google Scholar 

  • Ohga I (1927) Supramaximal temperature and life duration of the ancient fruits of Indian Lotus. Bot Mag 41:161–172

    Google Scholar 

  • Okamoto T, Higuchi K, Shinkawa T, Isobe T, Lörz H, Koshiba T, Kranz E (2004) Identification of major proteins in maize egg cells. Plant Cell Physiol 45:1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Priestley DA (1986) Seed ageing: Implications for seed storage and persistence in the Soil. Cornell University Press, Ithaca

    Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  PubMed  CAS  Google Scholar 

  • Rhee HJ, Kim GY, Huh JW, Kim SW, Na DS (2000) Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur J Biochem 267:3220–3225

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Scialabba A, Bellani LM, Dell’Aquila A (2010) Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. Eur J Histochem 46:351–358

    Google Scholar 

  • Shen-Miller J (2002) Sacred lotus, the long-living fruits of China Antique. Seed Sci Res 12:131–143

    Article  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Shen-Miller J, Schopf JW, Harbottle G, Cao RJ, Ouyang S, Zhou KS, Southon JR, Liu GH (2002) Long-living lotus: germination and soil gamma-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am J Bot 89:236–247

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    Article  PubMed  CAS  Google Scholar 

  • Sundaram S, Rathinasabapathi B (2010) Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta 231:361–369

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Torres SB, Marcos Filho J (2003) Accelerated aging of melon seeds. Scientia Agricola 60:77–82

    Article  Google Scholar 

  • Vigh L, Horvath I, Maresca B, Harwood JL (2007) Can the stress protein response be controlled by “membrane-lipid therapy”? Trends Biochem Sci 32:357–363

    Article  PubMed  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walters C, Ballesteros D, Vertucci VA (2010) Structural mechanics of seed deterioration: standing the test of time. Plant Sci Res 11:135–148

    Google Scholar 

  • Wharton MJ (1955) The use of tetrazolium test for determining the viability of seeds of the genus Brassica. Proc Int Seed Test Assoc 20:81–88

    Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin S, Niu Q, Chua N (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Chu P, Chen H, Li Y, Liu J, Ding Y, Tsang EWT, Jiang L, Wu K, Huang S (2011) Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta. doi:10.1007/s00425-011-1527-4

Download references

Acknowledgments

This work was supported by the Guangdong Agriculture Science and Technology Team Project (2011A02010210), the Natural Science Foundation of China (No. 30370912, 30971564 and 90919038) and Natural Science Foundation of Guangdong Province (2006B20101010 and 9151027501000075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangzhi Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, P., Chen, H., Zhou, Y. et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235, 1271–1288 (2012). https://doi.org/10.1007/s00425-011-1573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1573-y

Keywords

Navigation