Skip to main content
Log in

From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In this study, the proteome structures following the pathway in somatic embryogenesis of Cyclamen persicum were analysed via high-resolution 2D-SDS-PAGE with two objectives: (1) to identify the significant physiological processes during somatic embryogenesis in Cyclamen and (2) to improve the maturation of somatic embryos. Therefore, the effects of maturation-promoting plant growth regulator abscisic acid (ABA) and high sucrose levels on torpedo-shaped embryos were investigated. In total, 108 proteins of differential abundance were identified using a combination of tandem mass spectrometry and a digital proteome reference map. In callus, enzymes related to energy supply were especially distinct, most likely due to energy demand caused by fast growth and cell division. The switch from callus to globular embryo as well as from globular to torpedo-shaped embryo was associated with controlled proteolysis via the ubiquitin-26S proteasome pathway. Storage compound accumulation was first detected 21 days after transfer to plant growth regulator (PGR)-free medium in early torpedo-shaped embryos. Increase in abundance of auxin-amidohydrolase during embryogenesis suggests a possible increase in auxin release in the late embryo stages of Cyclamen. A development-specific isoelectric point switch of catalases has been reported for the first time for somatic embryogenesis. Several proteins were identified to represent markers for the different developmental stages analysed. High sucrose levels and ABA treatment promoted the accumulation of storage compounds in torpedo-shaped embryos. Additionally, proteins of the primary metabolic pathways were decreased in the proteomes of ABA-treated embryos. Thus, ABA and high sucrose concentration in the culture medium improved maturation and consequently the quality of somatic embryos in C. persicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

2iP:

6-(γ-γ-Dimethylallylamino) purine

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

EDTA:

Ethylenediaminetetraacetic acid

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HSP:

Heat shock protein

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradients

LEA:

Late embryogenesis abundant proteins

MS:

Mass spectrometry

PGR:

Plant growth regulator

RNase:

Endoribonuclease

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SERK:

Somatic embryogenesis receptor like kinase

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid

VDA channel:

Voltage-dependent anion channel

References

  • Aker J, Borst JW, Karlova R, de Vries S (2006) The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane. J Struc Biol 156:62–71

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  PubMed  CAS  Google Scholar 

  • Brukhin V, Gheyselincka J, Gagliardinia V, Genschikb P, Grossniklaus U (2005) The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. Plant Cell 17:2723–2737

    Article  PubMed  CAS  Google Scholar 

  • Colditz F, Braun HP, Jacquet C, Niehaus K, Krajinski F (2005) Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Mol Biol 59:387–406

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:459–466

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martin G, Manzanera JA, Gonzalez-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Org Cult 80:171–177

    Article  CAS  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, postembryonic development of Arabidopsis. Development 131:389–400

    Article  PubMed  CAS  Google Scholar 

  • Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28

    Article  PubMed  CAS  Google Scholar 

  • Gutmann M, von Aderkas P, Label P, Lelu AM (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J Exp Bot 305:1905–1917

    Article  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean: establishment of high resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 Gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  PubMed  CAS  Google Scholar 

  • Hönemann C, Richardt S, Krüger K, Zimmer AD, Hohe A, Rensing SA (2010) Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro. BMC Plant Biol 10:77

    Article  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two dimensional gel electrophoresis. Plant Physiol 8:802–806

    Article  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Kiviharju E, Tuominen U, Törmälä T (1992) The effect of explant material on somatic embryogenesis of Cyclamen persicum Mill. Plant Cell Tissue Organ Cult 28:187–194

    Article  Google Scholar 

  • Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690

    Article  CAS  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Lyngved R, Renaut J, Hausman JF, Iversen TH, Hvoslef-Eide AK (2008) Embryo specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul 27:353–369

    Article  CAS  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  PubMed  CAS  Google Scholar 

  • Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Plant Cell Tissue Organ Cult 74:229–235

    Article  CAS  Google Scholar 

  • Michalczuk L, Cooke J, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Int J Plant Biochem 31:1097–1103

    CAS  Google Scholar 

  • Mihr C, Braun HP (2003) Proteomics in plant biology. In: Michael P (ed) Handbook of proteomics methods. Humana, Totowa, pp 409–416

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Essential problems in quantification of proteins following colloidal staining with Coomassie Brilliant Blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11:101–117

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Pitto L, Lo Schiavo F, Giuliano G, Terzi M (1983) Analysis of the heat-shock protein pattern during somatic embryogenesis of carrot. Plant Mol Biol 2:231–237

    Article  CAS  Google Scholar 

  • Prange ANS, Serek M, Bartsch M, Winkelmann T (2010a) Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell Tiss Org Cult 101:171–182

    Article  Google Scholar 

  • Prange ANS, Bartsch M, Serek M, Winkelmann T (2010b) Regeneration of different Cyclamen species via somatic embryogenesis from callus, suspension cultures and protoplasts. Sci Hortic 125:442–450

    Article  CAS  Google Scholar 

  • Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Schumann E, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regul 24:102–115

    Article  CAS  Google Scholar 

  • Rode C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Winkelmann T (2011) Enolases: storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill. Plant Mol Biol 75:305–319

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–773

    Article  PubMed  CAS  Google Scholar 

  • Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD (2009) Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J 59:344–358

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Ewald A, Seyring M, Hohe A (2006) Comparative analysis of cell cycle events in zygotic and somatic embryos of Cyclamen persicum indicates strong resemblance of somatic embryos to recalcitrant seeds. Plant Cell Rep 25:643–650

    Article  PubMed  CAS  Google Scholar 

  • Schwenkel HG, Winkelmann T (1998) Plant regeneration via somatic embryogenesis from ovules of Cyclamen persicum Mill. Plant Tiss Cult Biotechnol 4:28–34

    Google Scholar 

  • Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N (2010) Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. Phytochemistry 71:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958

    Article  PubMed  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Rev Mol Cell Biol 7:847–859

    Article  CAS  Google Scholar 

  • Trapphoff T, Beutner C, Niehaus K, Colditz F (2009) Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)-elicited and -inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach. Mol Plant-Microbe Interact 22:421–436

    Article  PubMed  CAS  Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult 93:163–171

    Article  CAS  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Jürgens G (2005) Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8:32–37

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  PubMed  CAS  Google Scholar 

  • Wicart G, Mouras A, Lutz A (1984) Histological study of organogenesis and embryogenesis in Cyclamen persicum tissue cultures: evidence for a single organogenetic pattern. Protoplasma 119:159–167

    Article  Google Scholar 

  • Winkelmann T, Hohe A, Schwenkel HG (1998) Establishing embryogenic suspension cultures in Cyclamen persicum ‘Purple Flamed’. Adv Hortic Sci 12:25–30

    Google Scholar 

  • Winkelmann T, Meyer L, Serek M (2004) Desiccation of somatic embryos of Cyclamen persicum Mill. J Hortic Sci Biotechnol 79:479–483

    Google Scholar 

  • Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Yen CH, Yang YC, Ruscetti SK, Kirken RA, Dai RM, Li CCH (2000) Involvement of the ubiquitin–proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL- 2, and erythropoietin. J Immunol 165:6372–6380

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Frank Colditz, Institute of Plant Genetics, Leibniz Universitaet Hannover, for proof reading and critical discussion, Jenniffer Mwangi for proof reading, Michael Senkler for computer-related assistance and the DFG (German research foundation) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traud Winkelmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rode, C., Lindhorst, K., Braun, HP. et al. From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum . Planta 235, 995–1011 (2012). https://doi.org/10.1007/s00425-011-1554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1554-1

Keywords

Navigation