Skip to main content
Log in

Piecing together the puzzle of parasitic plant plastome evolution

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The importance of photosynthesis as a mode of energy production has put plastid genomes of plants under a constant purifying selection. This has shaped the characteristic features of plastid genomes across the entire spectrum of photosynthetic plants and has led to a highly uniform and conserved plastid genome with respect to structure, size, gene order, intron and editing site positions and coding capacity. Parasitic species that have dropped photosynthesis as the main energy provider share striking deviations from the plastid genome norm: multiple rearrangements within the circular chromosome, pseudogenization and gene deletions, promoter losses, intron losses as well as the extensive loss of mRNA editing competence have been reported. The collective loss of larger sets of functionally related genes like those for the plastid NADH–dehydrogenase complex and concomitant losses of RNA polymerase genes together with their target promoters point to “domino effects” where an initial loss might have triggered others. An example, which will be discussed in more detail, is the concomitant loss of the intron maturase gene matK and all introns that are supposedly subject to MatK-dependent splicing in two Cuscuta species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IR:

Inverted repeat

LSC:

Large single copy region

NEP:

Nuclear-endoded RNA polymerase

PEP:

Plastid-encoded RNA polymerase

ptDNA:

Plastid DNA

SSC:

Small single copy region

References

  • Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358:19–37

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  PubMed  CAS  Google Scholar 

  • Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Krupinska K, Krause K (2003) Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta 218:135–142

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids. Topics in current genetics, vol 19. Springer, Berlin, pp 29–62

  • Brayton KA, Lau AO, Herndon DR, Hannick L, Kappmeyer LS, Berens SJ, Bidwell SL, Brown WC, Crabtree J, Fadrosh D, Feldblum T, Forberger HA, Haas BJ, Howell JM, Khouri H, Koo H, Mann DJ, Norimine J, Paulsen IT, Radune D, Ren Q, Smith RK Jr, Suarez CE, White O, Wortman JR, Knowles DP Jr, McElwain TF, Nene VM (2007) Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 3: e148, pp 1401–1413

  • Bundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  Google Scholar 

  • Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bio Essays 26:235–247

    CAS  Google Scholar 

  • Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella. Gene 321:39–46

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Guisinger M, Kim HG, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67:696–704

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  PubMed  CAS  Google Scholar 

  • Blazier JC, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272

    Article  Google Scholar 

  • Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737

    Article  PubMed  CAS  Google Scholar 

  • de Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12

    Article  PubMed  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  PubMed  CAS  Google Scholar 

  • Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feldblyum TV, Pertea M, Allen J, Nierman WC, Taracha EL, Salzberg SL, White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V (2005) Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–137

    Article  PubMed  CAS  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    Article  PubMed  CAS  Google Scholar 

  • Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44

    Article  PubMed  CAS  Google Scholar 

  • Greiner S, Wang X, Herrmann RG, Rauwolf U, Mayer K, Haberer G, Meurer J (2008) The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II, a microevolutionary view using bioinformatics and formal genetic data. Mol Biol Evol 25:2019–2030

    Article  PubMed  CAS  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2008) Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci USA 105:18424–18429

    Article  PubMed  CAS  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600

    Article  PubMed  CAS  Google Scholar 

  • Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    Article  PubMed  CAS  Google Scholar 

  • Hess W, Müller A, Nagy F, Börner T (1994) Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513

    Article  CAS  Google Scholar 

  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Howe CJ, Purton S (2007) The little genome of apicomplexan plastids: its raison d’etre and a possible explanation for the ‘delayed death’ phenomenon. Protist 158:121–133

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217

    Article  PubMed  CAS  Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    Article  PubMed  CAS  Google Scholar 

  • Krause K (2010) Plastid genome variation and selective constraint in species of the parasitic plant genus Cuscuta. In: Urbano KV (ed) Advances in genetics research, vol 2, chap 15. Nova Science Publishers Inc, New York, pp 1–15

  • Krause K (2012) Plastid genomes of parasitic plants: a trail of reductions and losses. In: Bullerwell C (ed) Organelle genetics: evolution of organelle genomes and gene expression, chap 4. Springer, Berlin, in press

  • Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823

    PubMed  CAS  Google Scholar 

  • Krause K, Kilbienski I, Mulisch M, Rodiger A, Schafer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 23:268–275

    Article  PubMed  Google Scholar 

  • Liere K, Weihe A, Borner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168:1345–1360

    Article  PubMed  CAS  Google Scholar 

  • Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Borner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 6:36

    Article  PubMed  Google Scholar 

  • Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  CAS  Google Scholar 

  • Marechal A, Parent JS, Veronneau-Lafortune F, Joyeux A, Lang BF, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci USA 106:14693–14698

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Sabater B (2010) Plastid ndh genes in plant evolution. Plant Physiol Biochem 48:636–645

    Article  PubMed  CAS  Google Scholar 

  • McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 8:130

    Article  PubMed  Google Scholar 

  • McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57

    Article  PubMed  Google Scholar 

  • McNeal JR, Kuehl JV, Boore JL, Leebens-Mack J, dePamphilis CW (2009) Parallel loss of plastid introns and their maturase in the genus Cuscuta. PLoS One 4:e5982

    Article  PubMed  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30

    Article  PubMed  CAS  Google Scholar 

  • Panda MM, Choudhury NK (1992) Effect of irradiance and nutrients on chlorophyll and carotenoid content and Hill reaction activity in Cuscuta reflexa. Photosyntetica 26:585–592

    CAS  Google Scholar 

  • Revill MJ, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Mol Biol Evol 24:2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Sato S (2011) The apicomplexan plastid and its evolution. Cell Mol Life Sci 68:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Barkan A (2007) RNA splicing and RNA editing in chloroplasts In: Bock R (ed) Cell and molecular biology plastids. Topics in Current Genetics, vol 19. Springer, Berlin, Heidelberg, pp 213–248

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  CAS  Google Scholar 

  • Sherman TD, Pettigrew WT, Vaughn KC (1999) Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol 40:592–603

    CAS  Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    Article  PubMed  CAS  Google Scholar 

  • Tillich M, Krause K (2010) The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants. Nat Biotechnol 27:256–266

    CAS  Google Scholar 

  • Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  PubMed  CAS  Google Scholar 

  • van der Kooij TA, Krause K, Dorr I, Krupinska K (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210:701–707

    Article  PubMed  Google Scholar 

  • van der Kooij TA, Krupinska K, Krause K (2005) Tocochromanol content and composition in different species of the parasitic flowering plant genus Cuscuta. J Plant Physiol 162:777–781

    Article  PubMed  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, de Pamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    Article  PubMed  CAS  Google Scholar 

  • Wicke S, Schneeweiss GM, Depamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    Article  PubMed  CAS  Google Scholar 

  • Wickett NJ, Fan Y, Lewis PO, Goffinet B (2008a) Distribution and evolution of pseudogenes, gene losses, and a gene rearrangement in the plastid genome of the nonphotosynthetic liverwort, Aneura mirabilis (Metzgeriales, Jungermanniopsida). J Mol Evol 67:111–122

    Article  PubMed  CAS  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B (2008b) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Der JP, Duffy AM, Davidson JB, Grusz AL, Pryer KM (2011) The evolution of chloroplast genes and genomes in ferns. Plant Mol Biol 76:251–261

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC, Palmer JD (1992a) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992b) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  PubMed  CAS  Google Scholar 

  • Yue F, Cui L, de Pamphilis CW, Moret BM, Tang J (2008) Gene rearrangement analysis and ancestral order inference from chloroplast genomes with inverted repeat. BMC Genomics 9(Suppl 1):S25

    Article  PubMed  Google Scholar 

  • Zoschke R, Nakamura M, Liere K, Sugiura M, Borner T, Schmitz-Linneweber C (2010) An organellar maturase associates with multiple group II introns. Proc Natl Acad Sci USA 107:3245–3250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The constructive suggestions made by Prof. Karsten Fischer (University of Tromsø) regarding the text and concept of the manuscript are highly appreciated. The author is aware that in many cases, only a selection of relevant publications were cited and wishes to apologize to all authors whose original papers could not be referred to due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, K. Piecing together the puzzle of parasitic plant plastome evolution. Planta 234, 647–656 (2011). https://doi.org/10.1007/s00425-011-1494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1494-9

Keywords

Navigation