Skip to main content
Log in

The evolution of chloroplast genes and genomes in ferns

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Amer J Bot 97:1296–1303

    Article  Google Scholar 

  • Cai ZQ, Guisinger M, Kim HG, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67:696–704

    Article  PubMed  CAS  Google Scholar 

  • Chateigner-Boutin A-L, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35:e114

    Article  PubMed  Google Scholar 

  • Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB), pp 45–56

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122

    Article  PubMed  Google Scholar 

  • Cui LY, Leebens-Mack J, Wang LS, Tang JJ, Rymarquis L, Stern DB, de Pamphilis CW (2006) Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evol Biol 6:13

    Article  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Der JP (2010) Genomic perspectives on evolution in bracken fern. Dissertation, Utah State University

  • Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogen Evol 49:827–831

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) Geneious v3.0. BioMatters LTD

  • Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, de Pamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733

    Article  PubMed  CAS  Google Scholar 

  • Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed  Google Scholar 

  • Gao L, Yi X, Yang YX, Su YJ, Wang T (2009) Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol 9:130

    Article  PubMed  Google Scholar 

  • Goffinet B, Wickett NJ, Werner O, Ros RM, Shaw AJ, Cox CJ (2007) Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Ann Bot 99:747–753

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Grusz AL, Windham MD, Pryer KM (2009) Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). Amer J Bot 96:1636–1645

    Article  CAS  Google Scholar 

  • Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70:149–166

    Article  CAS  Google Scholar 

  • Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66:350–361

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, de Pamphilis CW, Chumley TW et al (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384

    Article  PubMed  CAS  Google Scholar 

  • Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, et al. (2010) Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol (in press)

  • Korall P, Schuettpelz E, Pryer KM (2010) Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution 64 (in press)

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  PubMed  CAS  Google Scholar 

  • Liere K, Link G (1995) RNA-binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis-alba L.). Nucleic Acids Res 23:917–921

    Article  PubMed  CAS  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274

    Article  PubMed  CAS  Google Scholar 

  • McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 8

  • McNeal JR, Leebens-Mack JH, Arumuganathan K, Kuehl JV, Boore JL, De Pamphilis CW (2006) Using partial genomic fosmid libraries for sequencing complete organellar genomes. BioTechniques 41:69–73

    Article  PubMed  CAS  Google Scholar 

  • Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6:355–368

    PubMed  CAS  Google Scholar 

  • Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17

    Article  PubMed  Google Scholar 

  • Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43

    Article  PubMed  CAS  Google Scholar 

  • Muse SV, Gaut BS (1997) Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. Genetics 146:393–399

    PubMed  CAS  Google Scholar 

  • Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2010) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J DOI: 10.1111/j.1467-7652.2010.00558.x

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monophylytes) with a focus on the early leptosporangiate divergences. Amer J Bot 91:1582–1598

    Article  CAS  Google Scholar 

  • Qiu YL, Dombrovska O, Lee J, Li LB, Whitlock BA et al (2005) Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int J Plant Sci 166:815–842

    Article  CAS  Google Scholar 

  • Qiu YL, Li LB, Wang B, Chen ZD, Dombrovska O et al (2007) A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708

    Article  CAS  Google Scholar 

  • Ratan A (2009) Assembly algorithms for next-generation sequence data. Dissertation, Pennsylvania State University

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallion S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  PubMed  CAS  Google Scholar 

  • Schuettpelz E, Pryer KM (2006) Reconciling extreme branch length differences: decoupling time and rate through the evolutionary history of filmy ferns. Syst Biol 55:485–502

    Article  PubMed  Google Scholar 

  • Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050

    Article  Google Scholar 

  • Smith AR, Tuomisto H, Pryer KM, Hunt JS, Wolf PG (2001) Metaxya lanosa, a second species in the genus and fern family Metaxyaceae. Syst Bot (in press)

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (2008) RNA editing in chloroplasts. In: Goringer HU (ed) RNA Editing. Nucleic Acids Mol Biol 20:123–142

  • Takenaka M, Merwe JA, Verbitskiy D, Neuwirt J, Zehrmann A, Brennicke A (2008) RNA editing in plant mitochondria. In: Göringer HU (ed) RNA editing. Nucleic Acids Mol Biol 20:1–18

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Hubschmann T, Borner T, Hess WR (1997) Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for matK as an essential splice factor. J Mol Biol 270:179–187

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Borner T, Hess WR (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874

    Article  PubMed  CAS  Google Scholar 

  • Wei FS, Stein JC, Liang CZ, Zhang JW, Fulton RS et al (2009) Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 5:e1000728

    Article  PubMed  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV et al (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59–65

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K et al (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Duffy AM, Roper JM (2009) Phylogenetic use of inversions in fern chloroplast genomes. Am Fern J 99:132–134

    Google Scholar 

  • Wolf PG, Roper JM, Duffy AM (2010) The evolution of chloroplast genome structure in ferns. Genome 53:731–738

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Functions and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Optim Appl 13:555–556

    CAS  Google Scholar 

  • Yatabe Y, Takamiya M, Murakami N (1998) Variation in the rbcL sequence of Stegnogramma pozoi subsp. mollissima (Thelypteridaceae) in Japan. J Plant Res 111:557–564

    Article  CAS  Google Scholar 

  • Zoschke R, Nakamura M, Liere K, Sugiura M, Börner T, Schmitz-Linneweber C (2010) An organellar maturase associates with multiple group II introns. Proc Natl Acad Sci USA 107:3245–3250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ALG and KMP are grateful to Lisa Bukovnik for advice on “second-generation” sequencing protocols and to Mohamed Noor for suggesting and facilitating the sequencing of Cheilanthes lindheimeri at Duke. Thanks to Mark Winston Ellis and Hardeep Rai for comments on the manuscript. This research was supported in part by NSF grant DEB-0717398 to KMP and DEB-0228432 to PGW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Wolf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Map depicting complete plastome of Cheilanthes lindheimeri. Genes on inside of circle are transcribed clockwise, those on the outside are transcribed counter-clockwise. Asterisks denote genes with introns. two asterisks denote a gene with two introns. Note that *rps12 is trans-spliced. (EPS 617 kb)

Supplementary Figure 2

Constraint tree used for analysis of substitution rates (EPS 381 kb)

Supplementary Table 1

Taxa used for nucleotide substitution rate analysis (DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, P.G., Der, J.P., Duffy, A.M. et al. The evolution of chloroplast genes and genomes in ferns. Plant Mol Biol 76, 251–261 (2011). https://doi.org/10.1007/s11103-010-9706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9706-4

Keywords

Navigation