Skip to main content

Advertisement

Log in

A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix® soybean GeneChip® directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

hpi:

Hours post inoculation

dpi:

Days post inoculation

SCN:

Soybean cyst nematode

J2:

Second stage juvenile

FS:

Farmer’s solution

PFA:

Paraformaldehyde

DEPC:

Diethylpyrocarbonate

LCM:

Laser capture microdissection

PAL:

Phenylalanine ammonia lyase

CCR:

Cinnamoyl-CoA reductase

COMT:

Caffeic acid O-methyltransferase

ACC oxidase:

1-Aminocyclopropane-1-carboxylate oxidase

SAM:

S-Adenosylmethionine synthetase

FSi :

Feeding site initial

QTL:

Quantitative trait loci mapping

PI:

Plant introduction

hpi:

Hours post-infection

dpi:

Days post-infection

pi-J2:

Pre-infective second stage juvenile

GO:

Gene ontology

LOX:

Lipoxygenase

AOS:

Allene oxide synthase

AOC:

Allene oxide cyclase

JA:

Jasmonic acid

TPIs:

Trypsin proteinase inhibitors

eto:

Ethylene overproducer

ein:

Ethylene insensitive

DET3:

DE-ETIOLATED 3

NPR1:

Nonexpressor of PR genes

References

  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Rootknot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4:217–224

    CAS  PubMed  Google Scholar 

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    PubMed  CAS  Google Scholar 

  • Acedo JR, Dropkin VH, Luedders VD (1984) Nematode population attrition and histopathology of Heterodera glycines-soybean associations. J Nematol 16:48–57

    PubMed  CAS  Google Scholar 

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    PubMed  CAS  Google Scholar 

  • Alkharouf N, Matthews BF (2004) SGMD: the soybean genomics and microarray database. Nucleic Acids Res 32:D398–D400

    PubMed  CAS  Google Scholar 

  • Alkharouf N, Khan R, Matthews BF (2004) Analysis of expressed sequence tags from roots of resistant soybean infected by the soybean cyst nematode. Genome 47:380–388

    PubMed  CAS  Google Scholar 

  • Alkharouf NW, Klink VP, Chouikha IB, Beard HS, MacDonald MH, Meyer S, Knap HT, Khan R, Matthews BF (2006) Timecourse microarray analyses reveals global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). Planta 224:838–852

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    PubMed  CAS  Google Scholar 

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408

    PubMed  CAS  Google Scholar 

  • Atkinson HJ, Harris PD (1989) Changes in nematode antigens recognized by monoclonal antibodies during early infections of soya bean with cyst nematode Heterodera glycines. Parasitology 98:479–487

    Google Scholar 

  • Baldridge GD, O’Neill NR, Samac DA (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    PubMed  CAS  Google Scholar 

  • Barnes DK, Thies JA, Rabas DL, Nelson DL, Smith DM (1990) Registration of two alfalfa germplasms with field resistance to the root lesion nematode. Crop Sci 30:751–752

    Google Scholar 

  • Bell J, Ryder TB, Windgate VPM, Bailey JA, Lamb CJ (1986) Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol Cell Biol 6:1615–1623

    PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    PubMed  CAS  Google Scholar 

  • Bird DM, Wilson MA (1994) DNA sequence and expression analysis of root-knot nematode-elicited giant cell transcripts. Mol Plant Microbe Interact 7:419–424

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Ødum N, Jørgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 2002(16):490–502

    Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230

    PubMed  CAS  Google Scholar 

  • Cabrera y Poch HL, Peto CA, Chory J (1993) A mutation in the Arabidopsis DET3 gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis. Plant J 4:671–682

    Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ, Wyss U, Grundler FM, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    PubMed  CAS  Google Scholar 

  • Caldwell BE, Brim CA, Ross JP (1960) Inheritance of resistance of soybeans to the soybean cyst nematode, Heterodera glycines. Agron J 52:635–636

    Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clark JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–64

    PubMed  CAS  Google Scholar 

  • Coˆte′ F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26:1379–1411

    Google Scholar 

  • Cole RA (1984) Phenolic acids associated with the resistance of lettuce cultivars to the lettuce root aphid. Ann Appl Biol 105:129–145

    CAS  Google Scholar 

  • Colgrove AL, Niblack TL (2005) The effect of resistant soybean on male and female development and adult sex ratios of Heterodera glycines. J Nematol 37:161–167

    PubMed  CAS  Google Scholar 

  • Colgrove AL, Niblack TL (2008) Correlation of female indices from virulence assays on inbred lines and field populations of Heterodera glycines. J Nematol 40:39–45

    PubMed  CAS  Google Scholar 

  • Concibido VC, Denny RL, Boutin SR, Hautea R, Orf JH, Young ND (1994) DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci 34:240–246

    Article  CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    PubMed  CAS  Google Scholar 

  • Cramer CL, Bell JN, Ryder TB, Bailey JA, Schuch W, Bolwell GP, Robbins MP, Dixon RA, Lamb CJ (1985) Coordinated synthesis of phytoalexin biosynthetic enzymes in biologically-stressed cells of bean (Phaseolus vulgaris L.). EMBO J 4:285–289

    PubMed  CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    CAS  Google Scholar 

  • Culligan K, Tissier A, Britta A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104

    PubMed  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death. J Biol Chem 279:779–787

    PubMed  CAS  Google Scholar 

  • de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38:12–26

    PubMed  Google Scholar 

  • DeBruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521

    CAS  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    PubMed  CAS  Google Scholar 

  • DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. 1993. Cell 74:757–768

    PubMed  CAS  Google Scholar 

  • Diers BW, Arelli PR (1999) Management of parasitic nematodes of soybean through genetic resistance. In: Kauffman HE (ed) Proceedings of world soybean research conference 6th, Chicago, IL. 4–7 Aug, pp 300–306

  • Diers BW, Skorupska HT, Rao-Arelli AP, Cianzio SR (1997) Genetic relationships among soybean plant introductions with resistance to soybean cyst nematode. Crop Sci 37:1966–1972

    Google Scholar 

  • Duffey SS, Felton GW (1991) Enzymatic antinutritive defenses of the tomato plant against insects. In: Hedin PA (ed) Naturally occurring pest bioregulators. ACS, Washington, pp 167–197

    Google Scholar 

  • Duffey SS, Stout MJ (1996) A nutritive and toxic compounds of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    CAS  Google Scholar 

  • Edens RM, Anand SC, Bolla RI (1995) Enzymes of the phenylpropanoid pathway in soybean infected with Meloiodiogyne incognita or Heterodera glycines. J Nematol 27:292–303

    PubMed  CAS  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    PubMed  CAS  Google Scholar 

  • Endo BY (1964) Penetration and development of Heterodera glycines in soybean roots and related and related anatomical changes. Phytopathology 54:79–88

    Google Scholar 

  • Endo BY (1965) Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology 55:375–381

    CAS  Google Scholar 

  • Endo BY (1991) Ultrastructure of initial responses of resistant and susceptible soybean roots to infection by Heterodera glycines. Rev Nematol 14:73–94

    Google Scholar 

  • Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–182

    PubMed  CAS  Google Scholar 

  • Felton GW, Donato RJ, Vecchio D, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694

    CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    PubMed  CAS  Google Scholar 

  • Gális I, Smith JL, Jameson PE (2004) Salicylic acid-, but not cytokinin-induced, resistance to WClMV is associated with increased expression of SA-dependent resistance genes in Phaseolus vulgaris. J Plant Physiol 161:459–466

    PubMed  Google Scholar 

  • Gallego F, Fleck O, Li A, Wyrzykowska J, Tinland B (2000) AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. Plant J 21:507–518

    PubMed  CAS  Google Scholar 

  • Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2001) Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol Plant Microbe Interact 14:1247–1254

    PubMed  CAS  Google Scholar 

  • Gao B, Allen R, Maier T, McDermott JP, Davis EL, Baum TJ, Hussey RS (2002) Characterisation and developmental expression of a chitinase gene in Heterodera glycines. Int J Parasitol 32:1293–1300

    PubMed  CAS  Google Scholar 

  • Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2003) The parasitome of the phytonematode Heterodera glycines. Mol Plant Microbe Interact 16:720–726

    PubMed  CAS  Google Scholar 

  • Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M (2008) Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. MPMI 21:98–109

    PubMed  CAS  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219

    PubMed  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis -2001 status. Curr Opin Plant Biol 4:301–308

    PubMed  CAS  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    PubMed  CAS  Google Scholar 

  • Golden AM, Epps JM, Riggs RD, Duclos LA, Fox JA, Bernard RL (1970) Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glycines). Plant Dis Rep 54:544–546

    Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    PubMed  CAS  Google Scholar 

  • Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. MPMI 13:1121–1129

    PubMed  CAS  Google Scholar 

  • Guo L, Dixon RA, Paiva NL (1994) Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7, 2′-dihydroxy-4′-methoxyisoflavanol dehydratase. J Biol Chem 269:22372–22378

    PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  CAS  Google Scholar 

  • Halbrendt J, Lewis S, Shipe E (1992) A technique for evaluating Heterodera glycines development in susceptible and resistant soybean. J Nematol 24:84–91

    PubMed  CAS  Google Scholar 

  • Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol 35:176–182

    PubMed  CAS  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    PubMed  Google Scholar 

  • Hargreaves JA, Mansfield JW, Coxon DT (1976) Identification of medicarpin as a phytoalexin in the broad bean plant (Vicia faba L.). Nature 262:318–319

    CAS  Google Scholar 

  • Hartwig EE (1981) Breeding productive soybean cultivars resistant to soybean cyst nematode for the southern United States. Plant Dis 65:303–307

    Google Scholar 

  • Haruta M, Pedersen JA, Constabel CP (2001) Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiol Plant 112:552–558

    PubMed  CAS  Google Scholar 

  • Hildebrand DF, Rodriguez JG, Brown GC, Lui KY, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites (Acari: Tetranychidae). J Econ Entomol 79:1459–1465

    Google Scholar 

  • Hwang CF, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J 34:585–593

    PubMed  CAS  Google Scholar 

  • Isenberg G, Bielser W, Meier-Ruge W, Remy E (1976) Cell surgery by laser micro-dissection: a preparative method. J Microsc 107:19–24

    PubMed  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    PubMed  CAS  Google Scholar 

  • Jenkins ME, Harlow GR, Liu Z, Shotwell MA, Ma J, Mount DW (1995) Radiation-sensitive mutants of Arabidopsis thaliana. Genetics 140:725–732

    PubMed  CAS  Google Scholar 

  • Jones MGK (1981) The development and function of plant cells modified by endoparasitic nematodes. In: Zuckerman BM, Rohde RA (eds) Plant parasitic nematodes, vol 3. Academic Press, New York, pp 255–279

    Google Scholar 

  • Jones MGK, Northcote DH (1972) Nematode-induced syncytium-a multinucleate transfer cell. J Cell Sci 10:789–809

    PubMed  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    PubMed  CAS  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid–isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    PubMed  CAS  Google Scholar 

  • Kawalleck P, Plesch G, Hahlbrock K, Somssich IE (1992) Induction by fungal elicitor of S-adenosyl-L-methionine synthetase and S-adenosyl-L-homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselinum crispum. Proc Natl Acad Sci USA 89:4713–4717

    PubMed  CAS  Google Scholar 

  • Khan R, Alkharouf N, Beard HS, MacDonald M, Chouikha I, Meyer S, Grefenstette J, Knap H, Matthews BF (2004) Resistance mechanisms in soybean: gene expression profile at an early stage of soybean cyst nematode invasion. J Nematol 36:241–248

    PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  • Kim KS, Riggs RD (1992) Cytopathological reactions of resistant soybean plants to nematode invasion. In: Wrather JA, Riggs RD (eds) Biology and management of the soybean cyst nematode. APS, St. Paul, pp 157–168

    Google Scholar 

  • Kim YH, Riggs RD, Kim KS (1987) Structural changes associated with resistance of soybean to Heterodera glycines. J Nematol 19:177–187

    PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130:234–243

    PubMed  CAS  Google Scholar 

  • Klink VP, MacDonald M, Alkharouf N, Matthews BF (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59:969–983

    Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald MH, Matthews BF (2007a) A comparative microarray analysis of an incompatible and compatible disease response by soybean (Glycine max) to soybean cyst nematode (Heterodera glycines) infection. Planta 226:1423–1447

    PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald MH, Matthews BF (2007b) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    PubMed  CAS  Google Scholar 

  • Klink VP, MacDonald MH, Martins VE, Park S-C, Kim K-H, Baek S–H, Matthews BF (2008) MiniMax, a new diminutive Glycine max variety, with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell Tiss Organ Cult 92:183–195

    CAS  Google Scholar 

  • Klink VP, Hosseini P, MacDonald MH, Alkharouf N, Matthews BF (2009a) Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 10:111

    PubMed  Google Scholar 

  • Klink VP, Kim K-H, Martins VE, MacDonald MH, Beard HS, Alkharouf NW, Lee S-K, Park S-C, Matthews BF (2009b) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of the formation of female Heterodera glycines cysts during infection of Glycine max. Planta 230:53–71

    PubMed  CAS  Google Scholar 

  • Leszczynski B, Wright LC, Bakowski T (1989) Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol Exp Appl 52:135–139

    CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    PubMed  CAS  Google Scholar 

  • Li HM, Altschmied L, Chory J (1994) Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev 8:339–349

    PubMed  CAS  Google Scholar 

  • Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J 21:519–528

    PubMed  CAS  Google Scholar 

  • Liu Z, Hall JD, Mount DW (2001) Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J 26:329–338

    PubMed  CAS  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297

  • Mahalingham R, Skorupska HT (1996) Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean. Genome 39:986–998

    Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci 4:215–219

    PubMed  Google Scholar 

  • Markiewicz E, Rzepecki R, Szopa J (1994) Molecular cloning and sequencing of the cDNA encoding plant nuclear matrix endonuclease. Acta Biochim Pol 41:137–138

    PubMed  CAS  Google Scholar 

  • Matson AL, Williams LF (1965) Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci 5:477

    Article  Google Scholar 

  • Matthews B, MacDonald MH, Thai VK, Tucker ML (2003) Molecular characterization of arginine kinase in the soybean cyst nematode (Heterodera glycines). J Nematol 35:252–258

    PubMed  CAS  Google Scholar 

  • Mayer AM (1987) Polyphenol oxidase in plants—recent progress. Phytochemistry 26:11–20

    Google Scholar 

  • McDowell JM, An Y-Q, McKinney EC, Huang S, Meagher RB (1996a) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    PubMed  CAS  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An Y-Q, Meagher RB (1996b) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Bielser W, Remy E, Hillenkamp F, Nitsche R, Unsold R (1976) The laser in the Lowry technique for microdissection of freeze-dried tissue slices. Histochem J 8:387–401

    PubMed  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    PubMed  CAS  Google Scholar 

  • Morello JR, Romero MP, Ramo TM, Motilva J (2005) Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci 168:65–72

    CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Nairn CJ, Winesett L, Ferl RJ (1988) Nucleotide sequence of an actin gene from Arabidopsis thaliana. Gene 65:247–257

    PubMed  CAS  Google Scholar 

  • Nakajima S, Sugiyama M, Iwai S, Hitomi K, Otoshi E, Kim ST, Jiang CZ, Todo T, Britt AB, Yamamoto K (1998) Cloning and characterization of a gene (UVR3) required for photorepair of 6–4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res 26:638–644

    PubMed  CAS  Google Scholar 

  • Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    PubMed  CAS  Google Scholar 

  • Newman LJ, Perazza DE, Juda L, Campbell MM (2004) Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J 37:239–250

    PubMed  CAS  Google Scholar 

  • Niblack TL, Riggs RD (2004) Variation in virulence phenotypes. In: Schmitt DP, Wrather JA, Riggs RD (eds) Biology and management of soybean cyst nematode, 2nd edn. Schmitt & Associates of Marceline, Marceline, pp 57–71

  • Niblack TL, Heinz RD, Smith GS, Donald PA (1993) Distribution, density, and diversity of Heterodera glycines in Missouri. J Nematol 25:880–886

    PubMed  CAS  Google Scholar 

  • Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JG, Tylka GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    PubMed  CAS  Google Scholar 

  • Noel GR (2004) Response to infection. In: Schmitt DP, Wrather JA, Riggs RD (eds) Biology and management of soybean cyst nematode, 2nd edn. Schmitt & Associates of Marceline, Marceline, pp 131–151

  • O’Donnell PJ, Truesdale MR, Calvert CM, Dorans A, Roberts MR, Bowles DJ (1998) A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant J 14:137–1342

    PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    PubMed  CAS  Google Scholar 

  • Petersen NHT, Joensen J, McKinney LV, Brodersen P, Petersen M, Hofius D, Mundy J (2009) Identification of proteins interacting with Arabidopsis ACD11. J Plant Physiol 166:661–666

    PubMed  CAS  Google Scholar 

  • Prayitno J, Imin N, Rolfe BG, Mathesius U (2006) Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis. J Proteome Res 5:3084–3095

    PubMed  CAS  Google Scholar 

  • Puthoff DP, Nettleton D, Rodermel SR, Baum TJ (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J 33:911–921

    PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    PubMed  CAS  Google Scholar 

  • Rancé I, Fournier J, Esquerré-Tugayé MT (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559

    PubMed  Google Scholar 

  • Rao-Arelli AP (1994) Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis 78:898–900

    Google Scholar 

  • Rao-Arelli AP, Wilcox JA, Myers O Jr, Gibson PT (1997) Soybean germplasm resistant to races 1 and 2 of Heterodera glycines. Crop Sci 37:1367–1369

    Google Scholar 

  • Riggs RD (1988) Races of Heterodera glycines. Nematropica 18:163–170

    Google Scholar 

  • Riggs RD, Schmitt DP (1988) Complete characterization of the race scheme for Heterodera glycines. J Nematol 20:392–395

    PubMed  CAS  Google Scholar 

  • Riggs RD, Schmitt DP (1991) Optimization of the Heterodera glycines race test procedure. J Nematol 23:149–154

    PubMed  CAS  Google Scholar 

  • Riggs RD, Kim KS, Gipson I (1973) Ultrastructural changes in Peking soybeans infected with Heterodera glycines. Phytopathology 63:76–84

    Google Scholar 

  • Roberts MR, Bowles DJ (1999) Fusicoccin, 14–3-3 proteins, and defense responses in tomato plants. Plant Physiol 119:1243–1250

    PubMed  CAS  Google Scholar 

  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140

    PubMed  CAS  Google Scholar 

  • Rooney MF, Ferl RJ (1995) Sequences of three Arabidopsis general regulatory factor genes encoding GF14 (14–3-3) proteins. Plant Physiol 107:283–284

    PubMed  CAS  Google Scholar 

  • Ross JP (1958) Host-parasite relationship of the soybean cyst nematode in resistant soybean roots. Phytopathology 48:578–579

    Google Scholar 

  • Ross JP (1962) Physiological strains of Heterodera glycines. Plant Dis Rep 46:766–769

    Google Scholar 

  • Ross JP, Brim CA (1957) Resistance of soybeans to the soybean cyst nematode as determined by a double-row method. Plant Dis Rep 41:923–924

    Google Scholar 

  • Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425–439

    PubMed  CAS  Google Scholar 

  • Sardanelli S, Kenworthy WJ (1997) Soil moisture control and direct seeding for bioassay of Heterodera glycines on Soybean. J Nematol (Suppl) 29:625–634

    CAS  Google Scholar 

  • Sass JE (1958) Botanical microtechnique. Iowa State College Press, Ames

    Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev 13:3259–3270

    PubMed  CAS  Google Scholar 

  • Schuster I, Abdelnoor RV, Marin SRR, Carvalho VP, Kiihl RAS, Silva JFV, Sediyama CS, Barros EG, Moreira MA (2001) Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theor Appl Genet 102:91–96

    CAS  Google Scholar 

  • Schutz I, Gus-Mayer S, Schmelzer E (2006) Profilin and Rop GTPases are localized at infection sites of plant cells. Protoplasma 227:229–235

    PubMed  CAS  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

    PubMed  CAS  Google Scholar 

  • Shannon JG, Arelli PR, Young LD (2004) Breeding for resistance and tolerance. In: Schmitt DP, Wrather JA, Riggs RD (eds) Biology and management of soybean cyst nematode, 2nd edn. Schmitt & Associates of Marceline, Marceline, pp 155–180

    Google Scholar 

  • Song WC, Baertschi SW, Boeglin WE, Harris TM, Brash AR (1993) Formation of epoxyalcohols by a purified allene oxide synthase. Implications for the mechanism of allene oxide synthesis. J Biol Chem 268:6293–6298

    PubMed  CAS  Google Scholar 

  • Stankovic B, Garic-Stankovic A, Smith CM, Davies E (1995) Isolation, sequencing, and analysis of a 14–3-3 brain protein homolog from pea (Pisum sativum L.). Plant Physiol 107:1481–1482

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is during Arabidopsis wound response. Planta 227:1221–1232

    Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Makishima T, Sasabe M, Ichinose Y, Shiraishi T, Nishimoto T, Yamada T (1997) dad-1, A putative programmed cell death suppressor gene in rice. Plant Cell Physiol 38:379–383

    PubMed  CAS  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    PubMed  CAS  Google Scholar 

  • The Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. PNAS 2001(98):5116–5121

    Google Scholar 

  • van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 54:785–793

    PubMed  Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:106–112

    CAS  Google Scholar 

  • Veronico P, Giannino D, Mellillo MT, Leone A, Reyes A, Kennedy MW, Bleve-Zacheo T (2006) A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol 141:1045–1055

    PubMed  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht

    Google Scholar 

  • Vijayan P, Shockey J, Lévesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    PubMed  CAS  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96

    PubMed  CAS  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006a) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    PubMed  Google Scholar 

  • Wang Y, Cai QN, Zhang QW, Han Y (2006b) Effect of the secondary substances from wheat on the growth and digestive physiology of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). Eur J Entomol 103:255–258

    Google Scholar 

  • Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT (2007) Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226:159–167

    PubMed  CAS  Google Scholar 

  • Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol 146:904–915

    PubMed  CAS  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    PubMed  CAS  Google Scholar 

  • Wilson MA, McK BD, van der Knaap E (1994) A comprehensive subtractive cDNA cloning approach to identify nematode-induced transcripts in tomato. Phytopathology 84:299–303

    CAS  Google Scholar 

  • Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003–2005. J Nematol 38:173–180

    PubMed  Google Scholar 

  • Wubben MJ, Jin J, Baum TJ (2008) Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol Plant Microbe Interact 21:424–432

    PubMed  CAS  Google Scholar 

  • Xiao Z, Tan K, Hu M, Liao P, Chen K, Luo M (2008) Cloning and expression analysis of GhDET3, a vacuolar H+-ATPase subunit C gene, from cotton. J Genet Genomics 35:307–312

    PubMed  CAS  Google Scholar 

  • Yoshida H, Wang KLC, Chang CM, Mori K, Uchida E, Ecker JR (2006) The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol Biol 62:427–437

    PubMed  CAS  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the United Soybean Board for their continued support provided by grant 5214. The authors thank Dr. David Munroe, Nina Bubunenko and Nicole Lum at the Laboratory of Molecular Technology, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21701, USA for the Affymetrix® soybean GeneChip® array hybridizations and data acquisition. Dr. Gary Lawrence, Department of Entomology and Plant Pathology, Mississippi State University provided helpful insight into the analysis. The authors thank Veronica Martins at the United States Department of Agriculture, Systematic Mycology and Microbiology Laboratory, Beltsville, MD, for careful editing of the manuscript. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Klink.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, V.P., Hosseini, P., Matsye, P. et al. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Mol Biol 71, 525–567 (2009). https://doi.org/10.1007/s11103-009-9539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9539-1

Keywords

Navigation