We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Identification and Functional Characterization of Three Phenylalanine Ammonia-Lyase Genes from Fallopia multiflora (Thunb.) Harald.

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Fallopia multiflora (Thunb.) Harald. is a commonly used traditional Chinese medicine that is rich in chemical constituents. Phenylalanine ammonia-lyase (PAL) is the first key enzyme in the phenylalanine pathway, catalyzing the deamination of L-phenylalanine to generate trans-cinnamic acid. Three PALs (FmPAL1, FmPAL2, and FmPAL3) were cloned and validated from F. multiflora for the first time, demonstrated the presence of a multigene family of PALs in F. multiflora. The predicted complete open reading frames (ORFs) of FmPAL1, FmPAL2, and FmPAL3 are 2118bp, 2109bp and 2160bp, encoding 705, 702 and 719 amino acids, respectively. The phylogenetic results indicated that FmPALs have significant evolutionary relatedness with the known PALs from dicotyledons. To further confirm their function, the three FmPALs were cloned into the pET-28a vector and expressed in Escherichia coli TransBL21 (DE3). The enzymatic activities of the FmPALs recombinant proteins were assayed and showed that FmPALs have a role in the d-catalyzed conversion of L-phenylalanine to trans-cinnamic acid. All three FmPALs showed tissue-specific expression. The expression of FmPAL1 and FmPAL2 genes were highest in stems and lowest in roots. Differently, the expression of FmPAL3 gene was highest in leaves and lowest in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, T.H., Zhang, J., Qiu, X.H., Bai, J.Q., Gao, Y.H., and Xu, W., Molecules, 2016, vol. 21, pp. 1–16. https://doi.org/10.3390/molecules21010040

    Article  CAS  Google Scholar 

  2. Kim, H.K., Choi, Y.H., Choi, J.S., Choi, S.U., Kim, Y.S., Lee, K.R., Kim, Y.K., and Ryu, S.Y., Arch. Pharm. Res., 2008, vol. 31, pp. 1225–1229. https://doi.org/10.1007/s12272-001-2100-7

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, L.X., Lin, M., Li, J.B., and Li, S.Z., Acta Pharmacologica Sinica, 1994, vol. 29, pp. 107–110. https://doi.org/10.16438/j.0513-4870.1994.02.005

    Article  CAS  Google Scholar 

  4. Lao, K.M., Han, D.Q., Chen, X.J., Zhao, J., Wang, T.J., and Li, S.P., Chem. Cent. J., 2013, vol. 7, p. 45. https://doi.org/10.1186/1752-153X-7-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, J. K., Yang, L., Meng, G.L., Fan, J., Chen, J.Z., He, Q.Z., Chen, S., Fan, J.Z., Luo, Z.J., and Liu, J., Eur. J. Pharmacol., 2012, vol. 689, pp. 31–37. https://doi.org/10.1016/j.ejphar.2012.05.045

    Article  CAS  PubMed  Google Scholar 

  6. Büchter, C., Ackermann, D., Honnen, S., Arnold, N., Havermann, S., Koch, K., and Wätjen, W., Food. Funct., 2015, vol. 6, pp. 3383–3392. https://doi.org/10.1039/c5fo00463b

    Article  PubMed  Google Scholar 

  7. Lee, S.V., Choi, K.H., Choi, Y.W., Hong, J.W., Baek. J.U., Choi, B.T., and Shin, H.K., Mol. Med. Rep., 2014, vol. 9, pp. 1415–1421. https://doi.org/10.3892/mmr.2014.1943

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, J., Xu. S., Song, F., Nian. L., Zhou, X., and Wang, S., IUBMB. Life., 2014, vol. 66, pp. 711–722. https://doi.org/10.1002/iub.1321

    Article  CAS  PubMed  Google Scholar 

  9. Yao, W., Huang, L., Sun. Q., Yang, L., Tang, L., Meng, G., Xu, X., and Zhang, W., Biomed. Pharmacother., 2016, vol. 83, pp. 1132–1140. https://doi.org/10.1016/j.biopha.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  10. Park, S.Y., Jin, M.L., Wang, Z., Park, G., and Choi, Y.W., Food. Chem. Toxicol., 2016, vol. 97, pp. 159–167. https://doi.org/10.1016/j.fct.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H.S., Liu, Y., Lin, L.Q., Zhao, J.L., Zhang, C.P., Jin, J.C., Wang, L., Bai, M.H., Wang, Y.C., Liu, M., and Shen, B.Z., Mol. Med. Rep., 2011, vol. 4, pp. 1313–1319. https://doi.org/10.3892/mmr.2011.574

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, W.L., Xue, X.P., and Zhang, Z.J., Int. J. Biol. Macromol., 2016, vol. 91, pp. 132–142. https://doi.org/10.1016/j.ijbiomac.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  13. Wang, W., He. Y., Lin, P., Li, Y., Sun, R., Gu. W., Yu, J., and Zhao, R., J. Ethnopharmacol., 2014, vol. 153, pp. 763–770. https://doi.org/10.1016/j.jep.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  14. Abe, I. and Morita, H., Nat. Prod. Rep., 2010, vol. 27, pp. 809–838. https://doi.org/10.1039/b909988n

    Article  CAS  PubMed  Google Scholar 

  15. Austin, M.B. and Noel, J.P., Nat. Prod. Rep., 2003, vol. 20, pp. 79–110. https://doi.org/10.1039/b100917

    Article  CAS  PubMed  Google Scholar 

  16. Barros, J. and Dixon, R.A., Trends. Plant. Sci., 2020, vol. 25, pp. 66–79. https://doi.org/10.1016/j.tplants.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  17. Weise, N.J., Parmeggiani, F., Ahmed, S.T., and Turner, N.J., Top. Catal., 2018, vol. 61, pp. 288–295. https://doi.org/10.1007/s11244-018-0898-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhargava, A., Ahad. A., Wang, S., Mansfield, S.D., Haughn, G.W., Douglas, C.J., and Ellis, B.E., Planta, 2013, vol. 237, pp. 1199–1211. https://doi.org/10.1007/s00425-012-1821-9

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X. and Liu, C.J., Mol. Plant., 2015, vol. 8, pp. 17–27. https://doi.org/10.1016/j.molp.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  20. Koukol, J., and Conn, E.E., J. Biol. Chem., 1961, vol. 236, pp. 2692–2698. https://doi.org/10.1016/S0021-9258(19)61721-7

    Article  CAS  PubMed  Google Scholar 

  21. Hou, X., Shao, F., Ma, Y., and Lu, S., Mol. Biol. Rep., 2013, vol. 40, pp. 4301–4310. https://doi.org/10.1007/s11033-013-2517-3

    Article  CAS  PubMed  Google Scholar 

  22. Hu, G.S., Jia, J.M., Hur, Y.J., Chung, Y.S., Lee, J.H., Yun, D.J., Chung, W.S., Yi, G.H., Kim, T.H., and Kim, D.H., Mol. Biol. Rep., 2011, vol. 38, pp. 3741–3750. https://doi.org/10.1007/s11033-010-0489-0

    Article  CAS  PubMed  Google Scholar 

  23. Li, C.L., Bai, Y.C., Chen, H., Zhao, H.X., Shao, J.R., and Wu, Q., Plant. Mol. Biol. Rep., 2012, vol. 30, pp. 1172–1182 https://doi.org/10.1007/s11105-012-0431-9

    Article  CAS  Google Scholar 

  24. Wanner, L.A., Li, G., Ware. D., Somssich, I.E., and Davis, K.R., Plant. Mol. Biol., 1995, vol. 27, pp. 327–338. https://doi.org/10.1007/BF00020187

    Article  CAS  PubMed  Google Scholar 

  25. Yu, H.N., Liu, X.Y., Gao, S., Han, X.J., Cheng, A.X., and Lou, H.X., Plant. Cell. Tiss. Org., 2014, vol. 117, pp. 265–277. https://doi.org/10.1007/s11240-014-0438-z

    Article  CAS  Google Scholar 

  26. Miranda, R.R., Silva, M., Barisón, M.J., Silber, A.M., and Iulek, J., Biochimie, 2020, vol. 175, pp. 181–188. https://doi.org/10.1016/j.biochi.2020.05.009

    Article  CAS  PubMed  Google Scholar 

  27. Fan, S.P., Chen, W., Wei, J.C., Gao, X.X., Yang, Y.C., Wang, A.H., Hu, G.S., and Jia, J.M., Chin. J. Nat. Med., 2022, vol. 20, pp. 1–10. https://doi.org/10.1016/S1875-5364(22)60173-0

    Article  Google Scholar 

  28. Kumar, A. and Ellis, B.E., Plant. Physiol., 2001, vol. 127, pp. 230–239. https://doi.org/10.1104/pp.127.1.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raes, J., Rohde. A., Christensen, J.H., Van de Peer, Y., and Boerjan, W., Plant. Physiol., 2003, vol. 133, pp. 1051–1071. https://doi.org/10.1104/pp.103.026484

  30. Ma, R.F., Liu, Q.Z., Xiao, Y., Zhang, L., Li, Q., Yin, J., and Chen, W.S., Chin. J. Nat. Med., 2016, vol. 14, pp. 801–812. https://doi.org/10.1016/S1875-5364(16)30097-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ritter, H. and Schulz, G.E., Plant. Cell., 2004, vol. 16, pp. 3426–3436. https://doi.org/10.1105/tpc.104.025288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kao, Y.Y., Harding, S.A., and Tsai, C.J., Plant. Physiol., 2002, vol. 130, pp. 796–807. https://doi.org/10.1104/pp.006262

  33. Lepelley, M., Mahesh, V., McCarthy, J., Rigoreau, M., Crouzillat, D., Chabrillange, N., de Kochko, A., and Campa, C., Planta, 2012, vol. 236, pp. 313–326. https://doi.org/10.1007/s00425-012-1613-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tong, Z, Z., Xie. J., Yin, M.Z., Wu, J.X., Zha, L.P., Chu, S.S., and Peng, H.S., Braz. J. Bot., 2022, vol. 45, pp. 897–907. https://doi.org/10.1007/s40415-022-00826-z

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 81973432), the Major Increase and Reduction Project at the Central Level “The Ability Establishment for Sustainable Utilization of Valuable Chinese Medicine Resources” (no. 2060302), the Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences (no. 2019RU57), the Anhui University of Chinese Medicine Talent Support Program (2022rcyb018) and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (no. ZYYCXTD-D-202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujiao Zhao or Huasheng Peng.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Abbreviations: PAL, Phenylalanine ammonia-lyase; PCR, Polymerase Chain Reaction; RT-PCR, Reverse Transcription-Polymerase Chain Reaction; LB, Luria-Bertani; SDS-PAGE, Sodium Dodecyl Sulphate-polyacrylamide gel electrophoresis; ORF, Open Reading Frame.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S1068162023030263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhengyang Yang, Yin, M., Cheng, M. et al. Identification and Functional Characterization of Three Phenylalanine Ammonia-Lyase Genes from Fallopia multiflora (Thunb.) Harald.. Russ J Bioorg Chem 49, 655–663 (2023). https://doi.org/10.1134/S1068162023030263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023030263

Keywords:

Navigation