Skip to main content
Log in

The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The lpa1 mutations in maize are caused by lesions in the ZmMRP4 (multidrug resistance-associated proteins 4) gene. In previous studies (Raboy et al. in Plant Physiol 124:355–368, 2000; Pilu et al. in Theor Appl Genet 107:980–987, 2003a; Shi et al. Nat Biotechnol 25:930–937, 2007), several mutations have been isolated in this locus causing a reduction of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, or InsP6) content and an equivalent increasing of free phosphate. In particular, the lpa1-241 mutation causes a reduction of up to 90% of phytic acid, associated with strong pleiotropic effects on the whole plant. In this work, we show, for the first time to our knowledge, an interaction between the accumulation of anthocyanin pigments in the kernel and the lpa mutations. In fact the lpa1-241 mutant accumulates a higher level of anthocyanins as compared to wild type either in the embryo (about 3.8-fold) or in the aleurone layer (about 0.3-fold) in a genotype able to accumulate anthocyanin. Furthermore, we demonstrate that these pigments are mislocalised in the cytoplasm, conferring a blue pigmentation of the scutellum, because of the neutral/basic pH of this cellular compartment. As a matter of fact, the propionate treatment, causing a specific acidification of the cytoplasm, restored the red pigmentation of the scutellum in the mutant and expression analysis showed a reduction of ZmMRP3 anthocyanins’ transporter gene expression. On the whole, these data strongly suggest a possible interaction between the lpa mutation and anthocyanin accumulation and compartmentalisation in the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HIP:

High inorganic phosphate

InsP:

myo-Inositol phosphates

Lpa:

Low phytic acid

References

  • Astadi IR, Astuti M, Santoso U, Nugraheni PS (2009) In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem 112:659–663

    Article  CAS  Google Scholar 

  • Bogoslavsky L, Neumann PM (1998) Rapid regulation by acid pH of cell wall adjustment and leaf growth in maize plants responding to reversal of water stress. Plant Physiol 118:701–709

    Article  CAS  PubMed  Google Scholar 

  • Bregitzer P, Raboy V (2006) Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci 46:1318–1322

    Article  Google Scholar 

  • Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL, Radicella JP, Robbins Chen JC, Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell 1:1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL, Eggleston WB, Dorweiler JE (2000) Paramutation in maize. Plant Mol Biol 43:121–145

    Article  CAS  PubMed  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • de Vlaming P, Schram AW, Wiering H (1983) Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theor Appl Genet 66:271–278

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: Version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173–199

    Article  CAS  PubMed  Google Scholar 

  • Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E (2009) Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. J Exp Bot 60:967–978

    Article  CAS  PubMed  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826

    Article  CAS  PubMed  Google Scholar 

  • Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol Med 8:61–69

    Article  CAS  PubMed  Google Scholar 

  • Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalysed hydroxyl radical formation. J Biol Chem 259:3620–3624

    CAS  PubMed  Google Scholar 

  • Graf E, Epson KL, Eaton JW (1987) Phytic acid: a natural antioxidant. J Biol Chem 262:11647–11650

    CAS  PubMed  Google Scholar 

  • Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E (2004) Identification and characterization of a low phytic acid wheat. Crop Sci 44:418–424

    Article  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660

    Article  CAS  PubMed  Google Scholar 

  • Hou DX, Fujii M, Terahara N, Yoshimoto M (2004) Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 5:321–325

    Article  Google Scholar 

  • Kania A, Langlade N, Martinoia E, Neumann G (2003) Phosphorus deficiency-induced modifications in citrate catabolism and in cytosolic pH as related to citrate exudation in cluster roots of white lupin. Plant Soil 248:117–127

    Article  CAS  Google Scholar 

  • Kermicle JL (1984) Recombination between components of a mutable gene system in maize. Genetics 107:489–500

    CAS  PubMed  Google Scholar 

  • Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146

    Article  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Liu K, Peterson KL, Raboy V (2007) Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. J Agric Food Chem 55:4453–4460

    Article  CAS  PubMed  Google Scholar 

  • O’Dell BL, de Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–721

    Article  Google Scholar 

  • Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2002) LCMS analysis of anthocyanins from purple corn cob. J Sci Food Agric 82:1003–1006

    Article  CAS  Google Scholar 

  • Pilu R, Panzeri D, Gavazzi G, Rasmussen S, Consonni G, Nielsen E (2003a) Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet 107:980–987

    Article  CAS  PubMed  Google Scholar 

  • Pilu R, Piazza P, Petroni K, Ronchi A, Martin C, Tonelli C (2003b) pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. Plant J 36:510–521

    Article  CAS  PubMed  Google Scholar 

  • Pilu R, Landoni M, Cassani E, Doria E, Nielsen E (2005) The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci 45:2096–2105

    Article  CAS  Google Scholar 

  • Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen E (2009) A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity 102:236–245

    Article  CAS  PubMed  Google Scholar 

  • Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78:570S–578S

    CAS  PubMed  Google Scholar 

  • Raboy V (1990) The biochemistry and genetic of phytic acid synthesis. In: Morre DJ, Boss W, Loewus FA (eds) Inositol metabolism in plants. Alan R Liss, New York, pp 52–73

    Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  CAS  PubMed  Google Scholar 

  • Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158:489–497

    Article  CAS  Google Scholar 

  • Raina K, Rajamanickam S, Singh RP, Agarwal R (2008) Chemopreventive efficacy of inositol hexaphosphate against prostate tumor growth and progression in tramp mice. Clin Cancer Res 14:3177–3184

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SK, Hatzack F (1998) Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas 129:107–112

    Article  CAS  Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517

    Article  CAS  PubMed  Google Scholar 

  • Shi JR, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  CAS  PubMed  Google Scholar 

  • Shi JR, Wang HY, Schellin K, Li BL, Faller M, Stoop JM (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  CAS  PubMed  Google Scholar 

  • Stevenson JM, Perera IY, Heilman I, Person S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck D, Ripoll PJ, Brown DA, Edwards KJ, Theodoulou F (2003) Isolation and characterisation of two multidrug resistance associated protein genes from maize. Gene 315:153–164

    Article  CAS  PubMed  Google Scholar 

  • Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K, Pilu R, Rotilio D, Tonelli C, de Leiris J, Boucher F, Martins C (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia–reperfusion injury. J Nutr 138:747–752

    CAS  PubMed  Google Scholar 

  • van Tunen AJ, Koes RE, Spelt CE, van der Kroll AR, Stuitje AR, Mol JNM (1988) Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light regulated and differential expression of flavonoid genes. EMBO J 14:2350–2363

    Google Scholar 

  • Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55:109–125

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wright AD, Moehlenkamp CA, Perrot GH, Neuffer MG, Cone KC (1992) The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase. Plant Cell 4:711–719

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kondo T, Okazaki Y, Katou K (1995) Cause of blue petal color. Nature 373:291

    Article  CAS  Google Scholar 

  • Yuan FJ, Zhao HJ, Ren XL, Zhu SL, Fu XJ, Shu QY (2007) Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet 115:945–957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondo Interno Ricerca Scientifica e Tecnologica (F.I.R.S.T. 2007, 2008 and 2009 to R. Pilu). We wish to thank Dr. Victor Raboy, USDA ARS, Aberdeen, Idaho, USA, for his generous gift of lpa1-1 seeds, and Dr. Davide Reginelli for his hard work in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pilu.

Additional information

F. Cerino Badone and E. Cassani contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerino Badone, F., Cassani, E., Landoni, M. et al. The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel. Planta 231, 1189–1199 (2010). https://doi.org/10.1007/s00425-010-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1123-z

Keywords

Navigation