Skip to main content
Log in

On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells—peroxidases after elicitation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A cell culture of Picea abies (L.) Karst. was used for studies of H2O2 generation during constitutive extracellular lignin formation and after elicitation by cell wall fragments of a pathogenic fungus, Heterobasidium parviporum. Stable, micromolar levels of H2O2 were present in the culture medium during lignin formation. Elicitation induced a burst of H2O2, peaking at ca. 90 min after elicitation. Of exogenous reducing substrates that may be responsible for the synthesis of H2O2 from O2, NADH stimulated H2O2 production irrespective of elicitation. Cysteine (Cys) and glutathione (GSH) partially scavenged the constitutive H2O2, but usually increased or prolonged elicitor-induced H2O2 formation. Culture medium peroxidases were not able to generate H2O2 in vitro with Cys or GSH as reductants. These thiols, however, generated H2O2 non-enzymically at pH 4.5. [35S]Sulphate feeding to spruce cells showed that endogenous sulphur-containing compounds (including GSH, GSSG and cysteic acid) existed in the culture medium. The apoplastic levels of these were, however, undetectable by the monobromobimane method suggesting that their contribution to apoplastic H2O2 formation is probably minor. Azide, an inhibitor of haem-containing enzymes, slightly inhibited constitutive H2O2 generation but strongly delayed the elicitor-induced H2O2 accumulation. Diphenylene iodonium, an inhibitor of flavin-containing enzymes, efficiently inhibited H2O2 production irrespective of elicitation. Elicitation led to downregulation of the expression of several peroxidase genes, and peroxidase activity in the culture medium was slightly reduced. Expression of three other peroxidase genes and a respiratory burst oxidase homologue (rboh) gene were upregulated. These data suggest that both peroxidases and rboh may contribute to H2O2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAW:

Butan-1-ol:acetic acid:water (12:3:5, v/v/v)

Cys:

Cysteine

DPI:

Diphenylene iodonium

E:

Elicitor

γ-Glu-Cys:

γ-Glutamylcysteine

GSH:

Glutathione

GSSG:

Oxidised glutathione

mBBr:

Monobromobimane

ROS:

Reactive oxygen species

XO:

Xylenol orange

References

  • Adomas A, Heller G, Li G, Olson Å, Chu TM, Osborne J, Craig D, van Zyl L, Wolfinger R, Sederoff R, Dean RA, Stenlid J, Finlay R, Asiegbu FO (2007) Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27:1441–1458

    PubMed  CAS  Google Scholar 

  • Albro PW, Corbett JT, Schroeder JL (1986) Generation of hydrogen peroxide by incidental metal ion-catalyzed autoxidation of glutathione. J Inorg Biochem 27:191–203

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  PubMed  CAS  Google Scholar 

  • Ayers AR, Ebel J, Valent B, Albersheim P (1976) Host–pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57:760–765

    Article  PubMed  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  PubMed  CAS  Google Scholar 

  • Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP (2001) Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+. New Phytol 151:185–194

    Article  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed  CAS  Google Scholar 

  • Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Davies DR, Bindschedler LV, Strickland TS, Bolwell GP (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. J Exp Bot 57:1817–1827

    Article  PubMed  CAS  Google Scholar 

  • Dennis DT, Blakeley SD (2000) Carbohydrate metabolism. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, pp 630–675

  • Elfstrand M, Sitbon F, Lapierre C, Bottin A, von Arnold S (2002) Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants. Planta 214:708–716

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 130:175–180

    Article  CAS  Google Scholar 

  • Encina A, Fry SC (2005) Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor. Planta 223:77–89

    Article  PubMed  CAS  Google Scholar 

  • Fagerstedt K, Saranpää P, Piispanen R (1998) Peroxidase activity, isoenzymes and histological localisation in sapwood and heartwood of Scots pine (Pinus sylvestris L.). J For Res 3:43–47

    Article  Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    PubMed  CAS  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis, 2nd edn. Blackburn Press, Caldwell, NJ

    Google Scholar 

  • Gómez Ros LV, Paradiso A, Gabaldón C, Pedreno MA, de Gara L, Ros Barceló A (2006) Two distinct cell sources of H2O2 in the lignifying Zinnia elegans cell culture system. Protoplasma 227:175–183

    Article  PubMed  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–87

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1978) Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140:81–88

    Article  CAS  Google Scholar 

  • Harkin JM, Obst TR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:296–297

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett 471:245–250

    Article  PubMed  CAS  Google Scholar 

  • Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644

    Article  PubMed  Google Scholar 

  • Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353

    Article  PubMed  Google Scholar 

  • Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G (2005) Hydrogen peroxide and expression of hipI-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. J Exp Bot 56:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O ·−2 -generating activity in potato tuber tissues. J Exp Bot 57:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Koutaniemi S, Toikka MM, Kärkönen A, Mustonen M, Lundell T, Simola LK, Kilpeläinen IA, Teeri TH (2005) Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Plant Mol Biol 58:141–157

    Article  PubMed  CAS  Google Scholar 

  • Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242

    PubMed  CAS  Google Scholar 

  • Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N (2003) Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res 116:175–182

    Article  PubMed  CAS  Google Scholar 

  • Loomis WD, Battaile J (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5:423–438

    Article  CAS  Google Scholar 

  • Maijala P, Harrington TC, Raudaskoski M (2003) A peroxidase gene family and gene trees in Heterobasidion and related genera. Mycology 95:209–221

    Article  CAS  Google Scholar 

  • Majander A, Finel M, Wikström M (1994) Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 269:21037–21042

    PubMed  CAS  Google Scholar 

  • Marjamaa K, Hildén K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P, Koutaniemi S, Teeri TH, Fagerstedt K, Lundell T (2006) Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732

    Article  PubMed  CAS  Google Scholar 

  • Mensen R, Hager A, Salzer P (1998) Elicitor-induced changes of wall-bound and secreted peroxidase activities in suspension-cultured spruce (Picea abies) cells are attenuated by auxins. Physiol Plant 102:539–546

    Article  CAS  Google Scholar 

  • Messner B, Boll M (1994a) Extracellular peroxidases of suspension culture cells of spruce (Picea abies): fungal elicitor-induced inactivation. Plant Cell Tissue Organ Cult 36:81–90

    Article  CAS  Google Scholar 

  • Messner B, Boll M (1994b) Cell suspension cultures of spruce (Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide (oxidative burst). Plant Cell Tissue Organ Cult 39:69–78

    Article  CAS  Google Scholar 

  • Newton G, Dorian R, Fahey RC (1981) Analysis of biological thiols: derivatisation with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem 114:383–387

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Nose M, Bernards MA, Furlan M, Zajicek J, Eberhardt TL, Lewis NG (1995) Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry 39:71–79

    Article  PubMed  CAS  Google Scholar 

  • Otter T, Polle A (1997) Characterisation of acidic and basic apoplastic peroxidases from needles of Norway spruce (Picea abies. L., Karsten) with respect to lignifying substrates. Plant Cell Physiol 38:595–602

    CAS  Google Scholar 

  • Passardi E, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Pichorner H, Couperus A, Korori SAA, Ebermann R (1992) Plant peroxidase has a thiol oxidase function. Phytochemistry 31:3371–3376

    Article  CAS  Google Scholar 

  • Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.). Plant Physiol 94:312–319

    Article  PubMed  CAS  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A, Ghigo D (2004) Diphenyleniodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem 12:47726–47731

    Article  Google Scholar 

  • Ros Barceló A (1998a) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207:207–216

    Article  Google Scholar 

  • Ros Barceló A (1998b) Use and misuse of peroxidase inhibitors. Trends Plant Sci 3:418

    Article  Google Scholar 

  • Saez G, Thornalley PJ, Hill HAO, Hems R, Bannister JV (1982) The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim Biophys Acta 719:24–31

    PubMed  CAS  Google Scholar 

  • Salzer P, Hebe G, Reith A, Zitterell-Haid B, Stransky H, Gaschler K, Hager A (1996) Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes. Planta 198:118–126

    Article  CAS  Google Scholar 

  • Schupp R, Rennenberg J (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117

    Article  CAS  Google Scholar 

  • Schupp R, Glavac V, Rennenberg J (1991) Thiol composition of xylem sap of beech trees. Phytochemistry 30:1415–1418

    Article  CAS  Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta 187:136–141

    Article  CAS  Google Scholar 

  • Sebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  PubMed  CAS  Google Scholar 

  • Shinkle JR, Swoap SJ, Simon P, Jones RL (1992) Cell wall free space of Cucumis hypocotyls contains NAD and a blue light-regulated peroxidase activity. Plant Physiol 98:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35

    Article  CAS  Google Scholar 

  • Simola LK, Lemmetyinen J, Santanen A (1992) Lignin release and photomixotrophism in suspension cultures of Picea abies. Physiol Plant 84:374–379

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Vreeburg RAM, Fry SC (2005) Reactive oxygen species in cell walls. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, pp 215–249

Download references

Acknowledgments

Academy of Finland (Grant no. 105344, A.K.), Finnish Cultural Foundation (A.K.), the Finnish Graduate School in Plant Biology (T.W.), National Technology Agency, Tekes (FuncWood consortium, T.H.T.), and University of Helsinki are thanked for funding. Dr. Sanna Koutaniemi is thanked for valuable scientific discussions. Maaret Mustonen, M.Sc. is thanked for skilful technical assistance during in vitro peroxidase assays and Anna-Maija Niskanen is thanked for help in statistical analysis. Mr Ben Mewburn is thanked for the help in HPLC analysis. S.C.F. thanks the BBSRC for partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kärkönen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (XLS 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kärkönen, A., Warinowski, T., Teeri, T.H. et al. On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells—peroxidases after elicitation. Planta 230, 553–567 (2009). https://doi.org/10.1007/s00425-009-0968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0968-5

Keywords

Navigation