Skip to main content

Advertisement

Log in

Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Lignin biosynthesis is a major carbon sink in gymnosperms and woody angiosperms. Many of the enzymes involved are encoded for by several genes, some of which are also related to the biosynthesis of other phenylpropanoids. In this study, we aimed at the identification of those gene family members that are responsible for developmental lignification in Norway spruce (Picea abies (L.) Karst.). Gene expression across the whole lignin biosynthetic pathway was profiled using EST sequencing and quantitative real-time RT-PCR. Stress-induced lignification during bending stress and Heterobasidion annosum infection was also studied. Altogether 7,189 ESTs were sequenced from a lignin forming tissue culture and developing xylem of spruce, and clustered into 3,831 unigenes. Several paralogous genes were found for both monolignol biosynthetic and polymerisation-related enzymes. Real-time RT-PCR results highlighted the set of monolignol biosynthetic genes that are likely to be responsible for developmental lignification in Norway spruce. Potential genes for monolignol polymerisation were also identified. In compression wood, mostly the same monolignol biosynthetic gene set was expressed, but peroxidase expression differed from the vertically grown control. Pathogen infection in phloem resulted in a general up-regulation of the monolignol biosynthetic pathway, and in an induction of a few new gene family members. Based on the up-regulation under both pathogen attack and in compression wood, PaPAL2, PaPX2 and PaPX3 appeared to have a general stress-induced function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAD:

Cinnamyl alcohol dehydrogenase

CADL:

CAD-like

CCOMT:

Caffeoyl-CoA O-methyltransferase

CCR:

Cinnamoyl-CoA reductase

COMT:

Caffeic acid O-methyltransferase

CoA:

Coenzyme A

Ct:

Cycle threshold

C3H:

p-coumarate-3-hydroxylase

C4H:

Cinnamate-4-hydroxylase

EST:

Expressed sequence tag

F5H/CAld5H:

Ferulate/coniferaldehyde-5-hydroxylase

G:

Guaiacyl lignin

H:

Hydroxyphenyl lignin

HCT:

Hydroxycinnamoyl:CoA shikimate/quinate hydroxycinnamoyl transferase

PAL:

Phenylalanine ammonia-lyase

RT-PCR:

Reverse transcription polymerase chain reaction

RSCL:

Released suspension culture lignin

S:

Syringyl lignin

SAD:

Sinapaldehyde dehydrogenase

4CL:

4-coumarate:CoA ligase

References

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou J-P, Ullmann P, Pauly M, Lapierre C, Wreck-Reichhart D (2006) A coumaryl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    Article  PubMed  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  PubMed  CAS  Google Scholar 

  • Anterola AM, Jeon JH, Davin LB et al (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J Biol Chem 277:18272–18280

    Article  PubMed  CAS  Google Scholar 

  • Asiegbu FO, Adomas A, Stenlid J (2005) Pathogen profile: conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    Article  Google Scholar 

  • Atanassova R, Favet N, Martz F et al (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    Article  CAS  Google Scholar 

  • Bate NJ, Orr J, Ni W et al (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci 91:7608–7612

    Article  PubMed  CAS  Google Scholar 

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    Article  CAS  Google Scholar 

  • Blee KA, Choi JW, O’Connell AP et al (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Brunow G, Ede RM, Simola LK et al (1990) Lignins released from Picea abies suspension cultures – true native spruce lignins? Phytochemistry 29:2535–2538

    Article  CAS  Google Scholar 

  • Brunow G, Kilpeläinen I, Lapierre C et al (1993) The chemical structure of extracellular lignin released by cultures of Picea abies. Phytochemistry 32:845–850

    Article  CAS  Google Scholar 

  • Brunow G, Kilpeläinen I, Sipilä J et al (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis, 1st edn. ACS symposium series 697, Oxford University Press

  • Cai X, Davis EJ, Ballif J et al (2006) Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot 57:2563–2569

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen F, Yasuda S, Fukushima K (1999) Evidence for a novel biosynthetic pathway that regulates the ration of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta 207:597–603

    Article  CAS  Google Scholar 

  • Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.) Plant J 48:113–124

    Article  PubMed  CAS  Google Scholar 

  • Clark JI, Brooksbank C, Lomax J (2005) It’s all GO for plant scientists. Plant Physiol 138:1268–1279

    Article  PubMed  CAS  Google Scholar 

  • Costa MA, Collins RE, Anterola AM et al (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64:1097–1112

    Article  PubMed  CAS  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer-Verlag, Heidelberg

    Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1995) A β-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107:331–339

    Article  PubMed  CAS  Google Scholar 

  • von Doorsselaere J, Baucher M, Chognot E et al (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864

    Google Scholar 

  • Ehlting J, Buttner D, Wang Q et al (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS et al (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  PubMed  CAS  Google Scholar 

  • Elkind Y, Edwards R, Mavandad M et al (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci USA 87:9057–9061

    Article  PubMed  CAS  Google Scholar 

  • Fagerstedt KV, Saranpää P, Piispanen R (1998) Peroxidase activity, isoenzymes and histological localisation in sapwood and heartwood of Scots pine (Pinus sylvestris L.). J For Res 3:43–47

    Google Scholar 

  • Fergus BJ, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117

    Article  CAS  Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW et al (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Costa MA, Fujita M et al (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article  PubMed  CAS  Google Scholar 

  • Goffner D, Campbell MM, Campargue C et al (1994) Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol 106:625–632

    PubMed  CAS  Google Scholar 

  • Halpin C, Knight ME, Foxon GA et al (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  • Harkin JM, Obst TR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:296–297

    Article  PubMed  CAS  Google Scholar 

  • Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Hietala AM, Eikenes M, Kvaalen H et al (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui M, Honma M, Nagamura Y, Sasaki T, Ohashi Y (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett 471:245–250

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F et al (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P et al (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Hu WJ, Kawaoka A, Tsai CJ et al (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA 95:5407–5412

    Article  PubMed  CAS  Google Scholar 

  • Huggett J, Dheda K, Bustin S et al (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:284

    Article  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050

    Article  PubMed  CAS  Google Scholar 

  • Kajita S, Katayama Y, Omori S (1996) Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol 37:957–965

    PubMed  CAS  Google Scholar 

  • Kärkönen A, Koutaniemi S, Mustonen M et al (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353

    Article  PubMed  Google Scholar 

  • Kim SJ, Kim MR, Bedgar DL et al (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis . Proc Natl Acad Sci USA 101:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Koutaniemi S, Toikka MM, Kärkönen A et al (2005) Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Plant Mol Biol 58:141–157

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E et al (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Meyer K, Chapple C et al (1997) Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998

    Article  PubMed  CAS  Google Scholar 

  • Lewis NG, Davin LB, Sarkanen S (1999) The nature and function of lignins. In: Barton D, Nakanishi K et al (eds) Comprehensive natural products chemistry, 1st edn. Elsevier Science Ltd., Oxford, UK

    Google Scholar 

  • Li L, Popko JL, Zhang XH et al (1997) A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc Natl Acad Sci USA 94:5461–5466

    Article  PubMed  CAS  Google Scholar 

  • Li L, Osakabe Y, Joshi CP et al (1999) Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Mol Biol 40:555–565

    Article  PubMed  CAS  Google Scholar 

  • Li L, Popko JL, Umezawa T et al (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545

    Article  PubMed  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J et al (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1586

    Article  PubMed  CAS  Google Scholar 

  • Liang M, Davis E, Gardner D et al (2006) Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Logemann E, Reinold S, Somssich IE et al (1997) A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase. Biol Chem 378:909–913

    Article  PubMed  CAS  Google Scholar 

  • MacKay JJ, Liu W, Whetten R et al (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol Gen Genet 247:537–545

    Article  PubMed  CAS  Google Scholar 

  • Marjamaa K, Hildén K, Kukkola E et al (2006) Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732

    Article  PubMed  CAS  Google Scholar 

  • Nagy NE, Franceschi VR, Kvaalen H et al (2005) Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 19:694–702

    Article  Google Scholar 

  • Nedelkina S, Jupe SC, Blee KA et al (1999) Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean: engineering expression in yeast. Plant Mol Biol 39:1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L et al (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci 96:8955–8960

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Longet D, Penel C et al (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C et al (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Patten AM, Cardenas CL, Cochrane FC et al (2005) Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66:2092–2107

    Article  PubMed  CAS  Google Scholar 

  • Pavy N, Paule C, Parsons L et al (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 6:144

    Article  PubMed  Google Scholar 

  • Piquemal J, Lepierre C, Myton K et al (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Pourcel L, Routaboul J, Kerhoas L et al (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH et al (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Ralph S, Park JY, Bohlmann J et al (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S et al (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues J, Faix O, Pereira H (1999) Improvement of acetyl bromide method for lignin determination within large scale screening programmes. Holz Roh Werkst 57:341–345

    Article  CAS  Google Scholar 

  • Rogers LA, Dubos C, Cullis IF et al (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 56:1651–1663

    Article  PubMed  CAS  Google Scholar 

  • Rudd S, Mewes HW, Mayer KFX (2003) Sputnik: a database platform for comparative plant genomics. Nucleic Acids Res 31:128–132

    Article  PubMed  CAS  Google Scholar 

  • Samuels AL, Rensing KH, Douglas CJ et al (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    Article  PubMed  CAS  Google Scholar 

  • Sarkanen KV (1971) Precursors and their polymerisation. In: Sarkanen KV, Ludwig CH (eds) Lignins – occurrence, formation, structure and reactions, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  • Sasaki S, Nishida T, Tsutsumi Y et al (2004) Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage. FEBS Lett 562:197–201

    Article  PubMed  CAS  Google Scholar 

  • Savidge RA, Udagama-Randeniya PV (1992) Cell wall-bound coniferyl alcohol oxidase associated with lignification in conifers. Phytochemistry 31:2959–2966

    Article  CAS  Google Scholar 

  • Schmelzer E, Krüger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M et al (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Schubert R, Sperisen C, Müller-Starck G et al (1998) The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, southern hybridization, genetic analysis and phylogenetic relationships. Trees 12:453–463

    Google Scholar 

  • Sewalt VJH, Ni W, Blount JW et al (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouille G et al (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • Simola LK, Lemmetyinen J, Santanen A (1992) Lignin release and photomixotrophism in suspension cultures of Picea abies. Physiol Plant 84:374–379

    Article  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J et al (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer-Verlag, Berlin

    Google Scholar 

  • Tognolli M, Penel C, Greppin H et al (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Whetten R, Sun YH, Zhang Y et al (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47:275–291

    Article  PubMed  CAS  Google Scholar 

  • Yakolev IA, Fossdal C, Johnsen Ø et al (2006) Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet Genom 2:39–52

    Article  Google Scholar 

  • Ye ZH, Kneusel RE, Matern U et al (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6:1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Chiang VL (1997) Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol 113:65–74

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison WH III, Negrel J et al (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Finnish Forest Research Institute (Metla) and the nursery Nurmijärven Taimitarha are thanked for the spruce material. Maaret Mustonen, Irmeli Luovula and Sven Kevin are acknowledged for technical assistance. We thank M. Agric, Katriina Mouhu and Dr. Panu Somervuo for discussions on statistical analysis, and Dr. Roosa Laitinen for discussions on quantitative gene expression studies and critical comments on the manuscript. The Centre of Excellence program of the Academy of Finland and the National Technology Agency of Finland (TEKES) supported this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu H. Teeri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutaniemi, S., Warinowski, T., Kärkönen, A. et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65, 311–328 (2007). https://doi.org/10.1007/s11103-007-9220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9220-5

Keywords

Navigation