Skip to main content
Log in

Analysis of the phytochrome gene family in Ceratodon purpureus by gene targeting reveals the primary phytochrome responsible for photo- and polarotropism

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Using gene targeting by homologous recombination in Ceratodon purpureus, we were able to knock out four phytochrome photoreceptor genes independently and to analyze their function with respect to red light dependent phototropism, polarotropism, and chlorophyll content. The strongest phenotype was found in knock-out lines of a newly described phytochrome gene termed CpPHY4 lacking photo- and polarotropic responses at moderate fluence rates. Eliminating the atypical phytochrome gene CpPHY1, which is the only known phytochrome-like gene containing a putative C-terminal tyrosine kinase-like domain, affects red light-induced chlorophyll accumulation. This result was surprising, since no light dependent function was ever allocated to this unusual gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethylammonium bromide

GT:

Gene targeting

HR:

Homologous recombination

ONP:

Oligonucleotide primer

RAcE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcription based polymerase chain reaction

References

  • Algarra P, Linder S, Thümmler F (1993) Biochemical evidence that phytochrome of the moss Ceratodon purpureus is a light-regulated protein kinase. FEBS Lett 315:69–73

    Article  PubMed  CAS  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors 1. Plant Cell 13:993–997

    Article  PubMed  CAS  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    Article  PubMed  CAS  Google Scholar 

  • Brücker G, Mittmann F, Hartmann E, Lamparter T (2005) Targeted site-directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus. Planta 220:864–874

    Article  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  PubMed  CAS  Google Scholar 

  • Cove DJ, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105

    Article  Google Scholar 

  • Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol 8:397–405

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Esch H, Hartmann E, Cove D, Wada M, Lamparter T (1999) Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants. Planta 209:290–298

    Article  PubMed  CAS  Google Scholar 

  • Etzold H (1965) Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta 64:254–280

    Article  CAS  Google Scholar 

  • Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6:157–162

    Article  PubMed  CAS  Google Scholar 

  • Hartmann E, Jenkins G (1984) Photomorphogenesis of mosses and liverworts. In: Dyer AF, Ducket JG (eds) The experimental biology of bryophytes. Academic Press, London, pp 203–228

    Google Scholar 

  • Hartmann E, Weber M (1990) Photomodulation of protonemata development. In: Chopra RN, Bhatla SC (eds) Bryophyte development. Physiology and biochemistry. CRC Press, Boca Raton, pp 33–54

  • Hartmann E, Klingenberg B, Bauer L (1983) Phytochrome-mediated phototropism in protonemata of Ceratodon purpureus. Photochem Photobiol 38:599–603

    Article  Google Scholar 

  • Heitzeberg F, Chen IP, Hartung F, Orel N, Angelis KJ, Puchta H (2004) The Rad17 homologue of Arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant J 38:954–968

    Article  PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1992) Transformation of yeast. 1978. Biotechnology 24:337–341

    PubMed  CAS  Google Scholar 

  • Hohe A, Reski R (2003) A tool for understanding homologous recombination in plants. Plant Cell Rep 21:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Lamparter T, Mittmann F (1996) Cerpu PHY02, a “normal” phytochrome in Ceratodon (Accession No. U56698). Plant Physiol 112:446

    Google Scholar 

  • Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild type. Planta 158:357–364

    Article  Google Scholar 

  • Kadota A, Wada M, Furuya M (1982) Phytochrome-mediated phototropism and different dichroic orientation of Pr and Pfr in protonemata of the fern Adiantum capillus-veneris. Photochem Photobiol 35:533–536

    Article  CAS  Google Scholar 

  • Kagawa T, Lamparter T, Hartmann E, Wada M (1997) Phytochrome-mediated branch formation in protonemata of the moss Ceratodon purpureus. J Plant Res 110:363–370

    Article  CAS  Google Scholar 

  • Kamisugi Y, Cuming AC, Cove DJ (2005) Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 33:e173

    Article  PubMed  Google Scholar 

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214

    Article  PubMed  CAS  Google Scholar 

  • Kevei E, Schafer E, Nagy F (2007) Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J Exp Bot 58:3113–3124

    Article  PubMed  CAS  Google Scholar 

  • Kraml M (1994) Light direction and polarisation. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 417–446

    Google Scholar 

  • Lamparter T, Podlowski S, Mittmann F, Hartmann E, Schneider-Poetsch HAW, Hughes J (1995) Phytochrome from protonemal tissue of the moss Ceratodon purpureus. J Plant Physiol 147:426–434

    CAS  Google Scholar 

  • Lamparter T, Esch H, Cove D, Hughes J, Hartmann E (1996) Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ 19:560–568

    Article  Google Scholar 

  • Lamparter T, Esch H, Cove D, Hartmann E (1997a) Phytochrome control of phototropism and chlorophyll accumulation in the apical cells of protonemal filaments of wild type and an aphototropic mutant of the moss Ceratodon purpureus. Plant Cell Physiol 38:51–58

    PubMed  CAS  Google Scholar 

  • Lamparter T, Mittmann F, Gaertner W, Boerner T, Hartmann E, Hughes J (1997b) Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci USA 94:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Litts JC, Colwell GW, Chakerian RL, Quatrano RS (1991) Sequence analysis of a functional member of the Em gene family from wheat. DNA Seq 1:263–274

    Article  PubMed  CAS  Google Scholar 

  • Mathews S, Lavin M, Sharrock RA (1995) Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Ann Mo Bot Gard 82:296–321

    Article  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for the use in monocot transformation. Mol Gen Genet 231:150–160

    Article  PubMed  CAS  Google Scholar 

  • Mittmann F, Brücker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci USA 101:13939–13944

    Article  PubMed  CAS  Google Scholar 

  • Mittmann F, Dienstbach S, Wagner G (2007) Large scale extraction of high quality moss DNA. Russ J Plant Physiol 54:564–568

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents. Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Langer M (2002) Homologous recombination: ends as the means. Trends Plant Sci 7:435–440

    Article  PubMed  CAS  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  PubMed  CAS  Google Scholar 

  • Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288:2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Schwarz H, Schneider HAW (1987) Immunological assay of phytochrome in small sections of roots and other organs of maize (Zea mays L.) seedlings. Planta 170:152–160

    Article  CAS  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA 102:13705–13709

    Article  PubMed  CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thümmler F, Dufner M, Kreisl P, Dittrich P (1992) Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase. Plant Mol Biol 20:1003–1017

    Article  PubMed  Google Scholar 

  • Trouiller B, Schaefer DG, Charlot F, Nogue F (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Res 34:232–242

    Article  PubMed  CAS  Google Scholar 

  • Trouiller B, Charlot F, Choinard S, Schaefer DG, Nogue F (2007) Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of bryophyte transformation. Biotechnol Lett 29:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23:567–569

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Sugai M (1994) Photobiology of ferns. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 783–803

    Google Scholar 

  • Wu S-H, Lagarias C (1997) The phytochrome photoreceptor in the green alga Mesotaenium caldariorum: implication for a conserved mechanism of phytochrome action. Plant Cell Environ 20:691–699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dennis Hauser, Frankfurt a. M., Germany, for providing his software “MossBendingPlotter 3.0” visualizing the bending angles presented in Figs. 4, 5, 6, Tanja Gans for technical assistance and Man Mohan (Stowers Institute for medical research, Kansas City, MO, USA) for critical reading the manuscript and helpful discussion. The work was funded by grants of the Deutsche Forschungsgemeinschaft to CF (FO-290/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Forreiter.

Additional information

Accession number for CpPHY4: EU122393.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2009_922_MOESM1_ESM.pdf

Schematic plot of the four different phytochrome genes and the corresponding knock-out constructs. Exon sequences are highlighted in orange. Restriction sites relevant for Southern-blot analysis are indicated above the gene. Red bars indicate size and position of the labeled PCR probe used for Southern-blot analysis. Inserted hygromycin and G418 resistance cassettes are visualized green. a CpPHY1 and cpphy1 knock-out; b CpPHY2 and cpphy2 knock-out; c CpPHY3 and cpphy3 knock-out; d CpPHY4 and cpphy4 knock-out, respectively (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittmann, F., Dienstbach, S., Weisert, A. et al. Analysis of the phytochrome gene family in Ceratodon purpureus by gene targeting reveals the primary phytochrome responsible for photo- and polarotropism. Planta 230, 27–37 (2009). https://doi.org/10.1007/s00425-009-0922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0922-6

Keywords

Navigation