Skip to main content
Log in

Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cytokinins are plant hormones that regulate diverse aspects of plant growth and development. Arabidopsis cytokinin signal transduction utilizes a multi-step two-component signaling (TCS) system by histidyl–aspartidyl phosphorelays. We here show that phosphorylation of ARR7, an A-type response regulator that acts as a negative regulator of cytokinin signaling, is required for its function in plants. Phosphorylation of ARR7 is inhibited in vitro by mutation in a putative phospho-accepting Asp residue into an Asn residue (ARR7D85N). While ectopic expression of ARR7 decreases root-growth inhibition, callus formation, and cytokinin-inducible gene expression, overexpression of ARR7 D85N at the similar level does not generate these phenotypes. ARR7D85N is localized to the nucleus and the half-life of this mutant protein is similar to that of ARR7 in Arabidopsis mesophyll protoplasts. These results suggest that the phosphorylation of ARR7 is necessary for ARR7-mediated cytokinin response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AHK:

Arabidopsis histidine kinase

AHP:

Arabidopsis histidine-containing phosphotransfer domain protein

ARR:

Arabidopsis response regulator

BA:

6-Benzyladenine

CKI:

Cytokinin insensitive

CRE:

Cytokinin response

ETR:

Ethylene resistant

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

HPt:

Histidine-containing phosphotransfer protein

LUC:

Luciferase

MS:

Murashige Skoog

MUG:

4-Methylumberlliferyl-β-d-glucuronide

NLS:

Nuclear localization signal

PEG:

Polyethylene glycol

TCS:

Two-component signaling

WOL:

Wooden leg

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Abel S, Theologis A (1998) Transient gene expression in protoplasts of Arabidopsis thaliana. In: Martinez-Zapater JM, Salinas J (eds) Methods in molecular biology, vol 82, Arabidopsis protocols. Humana, Totowa, pp 209–217

    Google Scholar 

  • Birck C, Mourey L, Gouet P, Fabry B, Schumacher J, Rousseau P, Kahn D, Samama JP (1999) Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure 7:1505–1515

    Article  PubMed  CAS  Google Scholar 

  • Birck C, Malfois M, Svergun D, Samama JP (2002) Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 321:447–457

    Article  PubMed  CAS  Google Scholar 

  • Da Re S, Bertagnoli S, Fourment J, Reyrat JM, Kahn D (1994) Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res 22:1555–1561

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (ed) (2004) Plant hormones biosynthesis, signal transduction, action. Kluwer, Dordrecht

  • Dortay H, Mehnert N, Burkle L, Schmülling T, Heyl A (2006) Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 273:4631–4644

    Article  PubMed  CAS  Google Scholar 

  • Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714

    Article  PubMed  CAS  Google Scholar 

  • Harter K, Frohnmeyer H, Kircher S, Kunkel T, Muhlbauer S, Schäfer E (1994) Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts. Proc Natl Acad Sci USA 91:5038–5042

    Article  PubMed  CAS  Google Scholar 

  • Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 8:8821–8826

    Article  Google Scholar 

  • Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14:2015–2029

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14:S47–59

    Google Scholar 

  • Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  PubMed  CAS  Google Scholar 

  • Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, Kato T, Tabata S, Nagatani A, Mizuno T (2007) AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant Cell Physiol 48:375–380

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Wilson KJ (1991) The GUS gene fusion system. Plant Mol Biol Man B14:1–33

    Google Scholar 

  • Kakimoto T (1996) CKI1 a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Aoki K, Sakakibara H, Mizuno T (2004) Arabidopsis response regulator ARR22 ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 45:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Kakimoto T (2000) The CYTOKININ-HYPERSENSITIVE genes of Arabidopsis negatively regulate the cytokinin-signaling pathway for cell division and chloroplast development. Plant J 23:385–394

    Article  PubMed  CAS  Google Scholar 

  • Lee DJ, Park JY, Ku S-J, Ha Y-M, Kim S, Kim MD, Oh M-H, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics 277:115–137

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Scott DJ, Brannigan JA, Ladds JC, Cervin MA, Spiegelman GB, Hoggett JG, Barak I, Wilkinson AJ (2002) Dimer formation and transcription activation in the sporulation response regulator Spo0A. J Mol Biol 316:235–245

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    Article  PubMed  CAS  Google Scholar 

  • Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka Av Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  Google Scholar 

  • Maris AE, Sawaya MR, Kaczor-Grzeskowiak M, Jarvis MR, Bearson SM, Kopka ML, Schroder I, Gunsalus RP, Dickerson RE (2002) Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 9:771–778

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) Overexpression of Arabidopsis response regulators ARR4/ATRR1/IBC7 and ARR8/ATRR3 alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun 293:806–815

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Kim HJ, Kim J (2002) Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant J 32:669–683

    Article  PubMed  CAS  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA 99:15800–15805

    Article  PubMed  CAS  Google Scholar 

  • Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13: 2349–2360

    Article  PubMed  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth leaf senescence seed size germination root development and cytokinin metabolism. Plant Cell 18:40–54

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Bono H, Oka A (1998) Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol 39:1232–1239

    PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2002) Phosphorelay and transcription control in cytokinin signal transduction. Science 296:1650–1652

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Moon J, Huq E (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana CRE1/AHK4 and AHK3 differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreu PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Imamura A, Ueguchi C, Mizuno T (1998) Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol 39:1258–1268

    PubMed  CAS  Google Scholar 

  • Suzuki T, Sakurai K, Imamura A, Nakamura A, Ueguchi C, Mizuno T (2000) Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana. Biosci Biotechnol Biochem 64:2486–2489

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) Arabidopsis sensor His-kinase AHK4 can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43:123–129

    Article  PubMed  CAS  Google Scholar 

  • To JPC, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001a) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  PubMed  Google Scholar 

  • Ueguchi C, Sato S, Kato T, Tabata S (2001b) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed  CAS  Google Scholar 

  • Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21: 553–562

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Kumiko M, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98:11795–11800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Enamul Huq (University of Texas at Austin, USA) for pTLNLS vector and Illdoo Hwang (POSTECH, Pohang, Korea) for pDJ301 vector. We also thank Jin-Young Park for preliminary experiments. This work was supported by grants from the Agricultural Plant Stress Research Center (R11-2001-092-04001-0) funded by the Korea Science and Engineering Foundation and from the Plant Diversity Research Center of 21st Century Frontier Research Program (PF06302-01) funded by the Ministry of Science and Technology of the Korean Government to J. Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.J., Kim, S., Ha, YM. et al. Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta 227, 577–587 (2008). https://doi.org/10.1007/s00425-007-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0640-x

Keywords

Navigation