Skip to main content

Advertisement

Log in

Spinach SoHXK1 is a mitochondria-associated hexokinase

  • Rapid Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus. Of all the hexokinases that have been characterized to date, the only exception to this rule is a spinach type B HXK (SoHXK1) that, by means of subcellular fractionation, has been localized to the outer membrane of plastids. However, SoHXK1 has a membrane anchor domain that is almost identical to that of the other type B HXKs. To determine the localization of SoHXK1 enzyme by other means, we expressed SoHXK1::GFP fusion protein in tobacco and Arabidopsis protoplasts and compared its localization with that of the Arabidopsis AtHXK1::GFP fusion protein that shares a similar N-terminal membrane anchor domain. SoHXK1::GFP is localized adjacent to the mitochondria, similar to AtHXK1::GFP and all other previously examined type B HXKs. Proteomic analysis had previously identified AtHXK1 on the outside of the mitochondrial membrane. We, therefore, suggest that SoHXK1 enzyme is located adjacent to the mitochondria like the other type B HXKs that share the same N-terminal membrane anchor domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

GFP:

Green fluorescent protein

HXK:

Hexokinase

References

  • Bauer M, Dietrich C, Nowak K, Sierralta WD, Papenbrock J (2004) Intracellular localization of Arabidopsis sulfurtransferases. Plant Physiol 135:916–926

    Article  PubMed  CAS  Google Scholar 

  • Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006a) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224:598–611

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006b) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Cosio E, Bustamante E (1984) Subcellular localization of hexokinase in pea leaves. Evidence for the predominance of a mitochondrially bound form. J Biol Chem 259:7688–7692

    PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Granot D (1995) Cloning of Arabidopsis thaliana hexokinase cDNA by complementation of yeast cells. Plant Physiol 108:879–880

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Kandel M, Petreikov M, Levine I, Ricard B, Rothan C, Schaffer AA, Granot D (2002) The tomato hexokinase LeHXK1: cloning, mapping, expression pattern and phylogenetic relationships. Plant Sci 163:581–590

    Article  CAS  Google Scholar 

  • Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belausov E, Granot D (2006) Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 224:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • da-Silva WS, Rezende GL, Galina A (2001) Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation. J Exp Bot 52:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  PubMed  CAS  Google Scholar 

  • Draper J, Scott R, Hamil J (1988) Transformation of dicotiledonous plant cells using the Ti plasmid of A. tumefaciens and the Ri plasmid of A. rhizogenes. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Dry IB, Nash D, Wiskish TJ (1983) The mitochondrial localization of hexokinase in pea leaves. Planta 158:152–156

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Galina A, Reis M, Albuquerque MC, Puyou AG, Puyou MT, de Meis L (1995) Different properties of the mitochondrial and cytosolic hexokinases in maize roots. Biochem J 309:105–112

    PubMed  CAS  Google Scholar 

  • German MA, Asher I, Petreikov M, Dai N, Schaffer AA, Granot D (2004) Cloning, expression and characterization of LeFRK3, the fourth tomato (Lycopersicon esculentum Mill.) gene encoding fructokinase. Plant Sci 166:285–291

    Article  CAS  Google Scholar 

  • Giege P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Giese JO, Herbers K, Hoffmann M, Klosgen RB, Sonnewald U (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett 579:827–831

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Granot D (2007) Role of tomato hexose kinases. Funct Plant Biol 34 (in press)

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Kanayama Y, Dai N, Granot D, Petreikov M, Schaffer A, Bennett AB (1997) Divergent fructokinase genes are differentially expressed in tomato. Plant Physiol 113:1379–1384

    Article  PubMed  CAS  Google Scholar 

  • Kanayama Y, Granot D, Dai N, Petreikov M, Schaffer A, Powell A, Bennett AB (1998) Tomato fructokinases exhibit differential expression and substrate regulation. Plant Physiol 117:85–90

    Article  PubMed  CAS  Google Scholar 

  • Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta 224:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355

    Article  PubMed  CAS  Google Scholar 

  • Menu T, Rothan C, Dai N, Petreikov M, Etienne C, Destrac-Irvine A, Schaffer A, Granot D, Ricard B (2001) Cloning and characterization of a cDNA encoding hexokinase from tomato. Plant Sci 160:209–218

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Dennis DT (1983) Mitochondrial, plastid, and cytosolic isozymes of hexokinase from developing endosperm of Ricinus communis. Arch Biochem Biophys 226:458–468

    Article  PubMed  CAS  Google Scholar 

  • Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  PubMed  CAS  Google Scholar 

  • Renz A, Stitt M (1993) Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190:166–175

    CAS  Google Scholar 

  • Rolland F, Sheen J (2005) Sugar sensing and signalling networks in plants. Biochem Soc Trans 33:269–271

    Article  PubMed  CAS  Google Scholar 

  • Schnarrenberger C (1990) Characterization and compartmentation in green leaves, of hexokinases with different specificities for glucose, fructose, and mannose and for nucleoside triphosphates. Planta 181:249–255

    Article  CAS  Google Scholar 

  • Singh KK, Chen C, Epstein DK, Gibbs M (1993) Respiration of sugars in Spinach (Spinacia oleracea), Maize (Zea mays), and Chlamydomonas reinhardtii F-60 chloroplasts with emphasis on the hexose kinases. Plant Physiol 102:587–593

    PubMed  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Palaniappan A, Duncan K, Rhoads DM, Huber SC, Sachs MM (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J Biol Chem 281:15625–15635

    Article  PubMed  CAS  Google Scholar 

  • Tanner GJ, Copeland L, Turner JF (1983) Subcellular localization of hexose kinases in pea stems: mitochondrial hexokinase Pisum sativum. Plant Physiol 72:659–663

    Article  PubMed  CAS  Google Scholar 

  • Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge U, Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YT, Prata RTN, Williamson JD, Weddington M, Pharr DM (2000) Formation of a hexokinase complex is associated with changes in energy utilization in celery organs and cells. Plant Physiol 110:28–37

    Article  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by research grant No. 890/06 from The Israel Science Foundation, research grants No. IS-3397-06 and No. CA-9100-06 from BARD, the United States—Israel Binational Agricultural and Development Fund, and a grant from the US Department of Energy to A.P.M.W. (DE-FG02-04ER15562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Granot.

Additional information

Hila Damari-Weissler and Alexandra Ginzburg contributed equally to this manuscript. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 112/2007 series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damari-Weissler, H., Ginzburg, A., Gidoni, D. et al. Spinach SoHXK1 is a mitochondria-associated hexokinase. Planta 226, 1053–1058 (2007). https://doi.org/10.1007/s00425-007-0546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0546-7

Keywords

Navigation