Skip to main content
Log in

The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The development of seeds depends on the import of carbohydrates and amino acids supplied by the maternal tissue via the phloem. Several amino acid transporters have been reported to be expressed during seed and silique development in Arabidopsis thaliana (L.) Heynh. Here we show that mutants lacking the high affinity amino acid permease 8 (At1g10010) display a severe seed phenotype. The overall number of seeds and the number of normally developed seed is reduced by ∼50% in siliques of the Ataap8 T-DNA insertion mutant. This result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach. The seed phenotype is correlated with a specifically altered amino acid composition of young siliques. Aspartic acid and glutamic acid are significantly reduced in young siliques of the mutants. In correlation with the fact that AAP8 is a high affinity transporter for acidic amino acids, translocation of 14C-labelled aspartate fed via the root system to seeds of the mutants is reduced. AAP8 plays a crucial role for the uptake of amino acids into the endosperm and supplying the developing embryo with amino acids during early embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAP:

Amino acid permease

PTR:

Peptide transporter

OPT:

Oligopeptide transporter

RNAi:

RNA interference

RT-PCR:

Reverse transcriptase polymerase chain reaction

CaMV:

Cauliflower mosaic virus

DW:

Dry weight

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Atkins CA (2000) Biochemical aspects of assimilate transfers along the phloem path: N-solutes in lupins. Aust J Plant Physiol 27:531–537

    CAS  Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90:5944–5948

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci USA 92:12036–12040

    Article  PubMed  CAS  Google Scholar 

  • Guerche P, Tire C, De Sa FG, De CA, Van MM, Krebbers E (1990) Differential expression of the Arabidopsis 2S albumin genes and the effect of increasing gene family size. Plant Cell 2:469–478

    Article  PubMed  CAS  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  PubMed  CAS  Google Scholar 

  • Heath JJ, Weldon R, Monnot C, Meinke D (1986) Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana L. Planta 169:303–312

    Article  Google Scholar 

  • Higgins CF, Payne JW (1977) Peptide transport by germinating barley embryos. Planta 134:205–206

    Article  CAS  Google Scholar 

  • Higgins CF, Payne JW (1978a) Peptide transport by germinating barley embryos: evidence for a single common carrier for di- and oligopeptides. Planta 138:217–221

    Article  CAS  Google Scholar 

  • Higgins CF, Payne JW (1978b) Peptide transport by germinating barley embryos: uptake of physiological di- and oligopeptides. Planta 138:211–215

    Article  CAS  Google Scholar 

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544

    Article  PubMed  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Tegeder M (2004) Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J 40:60–74

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Heim U, Sauer N, Wobus U, Weber H (2001) Amino acid permeases in developing seeds of Vicia faba L.: expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J 28:61–71

    Article  PubMed  CAS  Google Scholar 

  • Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. The Arabidopsis book. American Society of Plant Biologists, Rockville. doi: 10.1199/tab.0018

  • Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  CAS  Google Scholar 

  • Offler CE, Patrick JW (1993) Pathway of photosynthate transfer in the developing seed of Vicia faba L: a structural assessment of the role of transfer cells in unloading from the seed coat. J Exp Bot 44:711–724

    Article  CAS  Google Scholar 

  • Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, Stierhof YD, Frommer WB (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Sharkey PJ, Lewis OAM (1975) Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122:11–26

    Article  CAS  Google Scholar 

  • Pate JS, Sharkey PJ, Atkins CA (1977) Nutrition of a developing legume fruit: functional economy in terms of carbon, nitrogen, water. Plant Physiol 59:506–510

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE, Wang XD (1995) Cellular pathway of photosynthate transport in coats of developing seed of Vicia faba L. and Phaseolus vulgaris L. I. Extent of transport through the coat symplast. J Exp Bot 46:35–47

    Article  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Song W, Steiner HY, Zhang L, Naider F, Stacey G, Becker JM (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol 110:171–178

    Article  PubMed  CAS  Google Scholar 

  • Song W, Koh S, Czako M, Marton L, Drenkard E, Becker JM, Stacey G (1997) Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants. Plant Physiol 114:927–935

    Article  PubMed  CAS  Google Scholar 

  • Stacey MG, Koh S, Becker J, Stacey G (2002) AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell 14:2799–2811

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  PubMed  CAS  Google Scholar 

  • Tegeder M, Offler CE, Frommer WB, Patrick JW (2000) Amino acid transporters are localized to transfer cells of developing pea seeds. Plant Physiol 122:319–326

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, West CE, Bray CM (2000) The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane. J Exp Bot 51:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SPP1108 grant to Roberto Schmidt and Wolfgang Koch). We thank Melanie Keinath and Bettina Stadelhofer for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Stransky, H. & Koch, W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana . Planta 226, 805–813 (2007). https://doi.org/10.1007/s00425-007-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0527-x

Keywords

Navigation