Skip to main content
Log in

Iron assimilation and transcription factor controlled synthesis of riboflavin in plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Iron homeostasis is vital for many cellular processes and requires a precise regulation. Several iron efficient plants respond to iron starvation with the excretion of riboflavin and other flavins. Basic helix–loop–helix transcription factors (TF) are involved in the regulation of many developmental processes, including iron assimilation. Here we describe the isolation and characterisation of two Arabidopsis bHLH TF genes, which are strongly induced under iron starvation. Their heterologous ectopic expression causes constitutive, iron starvation independent excretion of riboflavin. The results show that both bHLH TFs represent an essential component of the regulatory pathway connecting iron deficiency perception and riboflavin excretion and might act as integrators of various stress reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix–loop–helix

BPDS:

4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid

CaMV:

Cauliflower mosaic virus

TF:

Transcription factor

References

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix–loop–helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15:2497–2501

    Article  PubMed  CAS  Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    Article  PubMed  CAS  Google Scholar 

  • Brumbarova T, Bauer P (2005) Iron-mediated control of the basic helix–loop–helix protein FER, a regulator of iron uptake in tomato. Plant Physiol 137:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213

    PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix–loop–helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Vallejo EB, Susin S, Abadia A, Abadia J (1998) Changes in sugar beet leaf plasma membrane Fe(III)-chelate reductase activities mediated by Fe-deficiency, assay buffer composition, anaerobiosis and the presence of flavins. Protoplasma 205:163–168

    Article  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron—nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    PubMed  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–9

    Google Scholar 

  • Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577:528–534

    Article  PubMed  CAS  Google Scholar 

  • Jordan CM, Wakeman RJ, Devay JE (1992) Toxicity of free riboflavin and methionine riboflavin solutions to Phytophthora infestans and the reduction of potato late blight disease. Can J Microbiol 38:1108–1111

    Article  CAS  Google Scholar 

  • Kang HG, Foley RC, Onate-Sanchez L, Lin CGT, Singh KB (2003) Target genes for OBP3, a Dof transcription factor, include novel basic helix–loop–helix domain proteins inducible by salicylic acid. Plant J 35:362–372

    Article  PubMed  CAS  Google Scholar 

  • Kannan S (1988) Physiological-responses associated with Fe-deficiency stress in different plant species. J Plant Nutr 11:1185–1192

    CAS  Google Scholar 

  • Landsberg EC (1996) Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma 194:69–80

    Article  CAS  Google Scholar 

  • Li LH, Cheng XD, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54:125–136

    Article  PubMed  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943

    Article  PubMed  CAS  Google Scholar 

  • Littlewood TD, Evan GI (1998) Basic helix–loop–helix transcription factors. Oxford University Press, Oxford

    Google Scholar 

  • Lopez-Millan AF, Morales F, Andaluz S, Gogorcena Y, Abadia A, De Las Rivas J, Abadia J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–897

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    CAS  Google Scholar 

  • Massari ME, Murre C (2000) Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    Article  PubMed  CAS  Google Scholar 

  • Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron (III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    Article  PubMed  CAS  Google Scholar 

  • Nagarajah S, Ulrich A (1966) Iron nutrition of the sugar beet plant in relation to growth, mineral balance, and riboflavin formation. Soil Sci 102:399–407

    Article  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares JRC, The REGIA Consortium (2002) REGIA, an EU project on functional genomics of transcription factors from Arabidopsis thaliana. Comp Funct Genomics 3:102–108

    Article  CAS  PubMed  Google Scholar 

  • Pound GS, Welkie GW (1958) Iron nutrition of Nicotiana tabacum L. in relation to multiplication of tobacco mosaic virus. Virology 5:371–381

    Article  PubMed  CAS  Google Scholar 

  • Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77:1352–1360

    PubMed  CAS  Google Scholar 

  • Ramsey HH, Wilson TE (1957) Growth inhibition of Micrococcus pyogenes by manganese and riboflavin. Antonie Van Leeuwenhoek 23:226–234

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL (2002) Transcriptional regulation: a genomic overview. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. Am Soc Plant Biol, Rockville, MD. doi: 10.1199/tab.0085

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  • Römheld V, Marschner H (1981) Iron-deficiency-stress-induced morphological and physiological changes in root tips of sunflower. Physiol Plant 53:354–360

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193

    Article  PubMed  CAS  Google Scholar 

  • Shelton PS, Barton LL (2000) Ferric citrate reductase activity in Laccaria laccata, an ectomycorrhizal fungus. J Plant Nutr 23:1699–1706

    CAS  Google Scholar 

  • Slotnick IJ, Dougherty M (1965) Unusual toxicity of riboflavin and flavin mononucleotide for Cardiobacterium hominis. Antonie Van Leeuwenhoek 31:355–360

    Article  PubMed  CAS  Google Scholar 

  • Susin S, Abian J, Sanchezbaeza F, Peleato ML, Abadia A, Gelpi E, Abadia J (1993) Riboflavin 3′-sulfate and 5′-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem 268:20958–20965

    PubMed  CAS  Google Scholar 

  • Susin S, Abian J, Peleato ML, Sanchezbaeza F, Abadia A, Gelpi E, Abadia J (1994) Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L). Planta 193:514–519

    Article  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix–loop–helix transcription factor family. Plant Cell 15:1749–1770

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant Ys1 (Zea mays L. cv. Yellow Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    Google Scholar 

  • Weinstein LH, Purvis ER, Meiss AN, Uhler RL (1954) Chelates, absorption and translocation of ethylenediaminetetraacetic acid by sunflower plants. J Agric Food Chem 2:421–424

    Article  CAS  Google Scholar 

  • Welkie GW (1996) Iron-deficiency stress responses of a chlorosis-susceptible and a chlorosis-resistant cultivar of muskmelon as related to root riboflavin excretion. J Plant Nutr 19:1157–1169

    CAS  Google Scholar 

  • Welkie GW (2000) Taxonomic distribution of dicotyledonous species capable of root excretion of riboflavin under iron deficiency. J Plant Nutr 23:1819–1831

    CAS  Google Scholar 

  • Welkie GW, Miller GW (1993) Plant iron uptake physiology by non-siderophore systems. In: Barton L, Hemming B (eds) Iron chelation in plants and soil microorganisms. Academic, New York, pp 345–369

    Google Scholar 

  • Welkie GW, Heckmat-Shoar H, Miller GW (1990) Responses of pepper (Capsicum annum L.) plants to iron deficiency: solution pH and riboflavin. In: van Beusichem M (ed) Plant nutrition—physiology and applications. Kluwer, Dordrecht, pp 207–211

    Google Scholar 

  • Yang GP, Bhuvaneswari TV, Joseph CM, King MD, Phillips DA (2002) Roles for riboflavin in the SinorhizobiumAlfalfa association. Mol Plant Microbe Interact 15:456–462

    PubMed  CAS  Google Scholar 

  • Yuan YX, Zhang J, Wang DW, Ling HQ (2005) AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res 15:613–621

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhu HF, Liang H, Liu KF, Zhang AM, Ling HQ, Wang DW (2006) Further analysis of the function of AtBHLH29 in regulating the iron uptake process in Arabidopsis thaliana. J Integr Plant Biol 48:75–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Petra Hoffmeister, Susanne Knüpfer, Annett Busching, Alexandra Rech and Miriam Eisbrenner for technical assistance and Dr. Armin Meister for help with the statistical analysis. The GATEWAY overexpression vectors pJAM1502 and pB6GateS2 were kindly provided by Dr. Sergey Kushnir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bäumlein.

Additional information

Dedicated to the 65th birthday of Prof. Dr. Ulrich Wobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorwieger, A., Gryczka, C., Czihal, A. et al. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 226, 147–158 (2007). https://doi.org/10.1007/s00425-006-0476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0476-9

Keywords

Navigation