Skip to main content
Log in

Genomic in situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae)

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Molecular techniques that “paint” chromosomes offer exciting new opportunities for testing genome relationships.Milium montianum (2n=22) is a grass whose distinctive bimodal karyotype comprises 8 large (L-) and 14 smaller (S-) chromosomes. The proposal thatM. montianum is an allotetraploid, with diploidMilium vernale (2n=8) as the L-chromosome genome donor, has been impossible to confirm by classical means. To test this hypothesis, biotinylated total genomic DNA of diploidM. vernale (2n=8) was hybridized in situ to root tip chromosomes ofM. montianum. TheM. vernale probe hybridized preferentially to all L-chromosomes, but not to the S-chromosomes. These results (i) confirm the allopolyploid nature ofM. montianum, (ii) strongly support the theory that the L-chromosomes ofM. montianum were donated byM. vernale, or a closely related genotype and (iii) show that subsequently the L-chromosomes have largely retained their genomic integrity in the new allopolyploid backgroud. Clearly, genomic in situ hybridization (GISH) is a potentially powerful tool for studying genome evolution and biosystematics. It will often be useful for investigating the origins of wild and cultivated polyploid plant species, especially where conventional methods have failed, for studying introgression, and for understanding the mechanism(s) of origin of bimodal karyotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anamthawat-Jónsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79: 721–728

    Google Scholar 

  • Bennett MD, Heslop-Harrison JS, Smith JB, Ward JP (1983) DNA density in mitotic and meiotic metaphase chromosomes in plants and animals. J Cell Sci 63: 173–179

    Google Scholar 

  • Bennett ST, Thomas SM (1991) Karyological analysis and genome size inMilium (Gramineae) with special reference to polyploidy and chromosomal evolution. Genome 34: 868–878

    Google Scholar 

  • Brandham PE (1983) Evolution in a stable chromosome system. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, pp 251–260

    Google Scholar 

  • Brandriff BF, Gordon LA, Segraves R, Pinkel D (1991) The male-derived genome after sperm-egg fusion: Spatial distribution of chromosomal DNA and paternal-maternal genomic association. Chromosoma 100: 262–266

    Google Scholar 

  • Christidis L (1983) Extensive chromosomal repatterning in two congeneric species:Pytilla melba L. andPytilla phoenicoptera Swainson (Estrildidae: Aves). Cytogenet Cell Genet 36: 641–648

    Google Scholar 

  • Christidis L (1990) Chromosomal repatterning and systematics in the passeriformes (Songbirds). In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes totay, vol 10. Unwin Hyman, London Boston Sydney Wellington, pp 279–294

    Google Scholar 

  • Coulton G (1990) Non-radioisotopic labels for in situ hybridisation histochemistry: a histochemist's view. In: Harris N, Wilkinson DG (eds) In situ hybridisation: Application to developmental biology and medicine. Cambridge University Press, Cambridge, pp 1–32

    Google Scholar 

  • Crowhurst RN, Gardner RC (1991) A genome-specific repeat sequence from kiwifruit (Actinidia deliciosa var.deliciosa). Theor Appl Genet 81: 71–78

    Google Scholar 

  • Darlington CD (1963) Chromosome botany and the origins of cultivated plants. Allen and Unwin, London

    Google Scholar 

  • Evans GM (1988) Genetic control of chromosome pairing in polyploids. In: Brandham PE (ed) Kew chromosome conference III. HMSO, London, pp 253–260

    Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond [Biol] 312: 227–242

    Google Scholar 

  • Greilhuber J, Deumling B, Speta F (1981) Evolutionary aspects of chromosome banding, heterochromatin, satellite DNA, and genome size inScilla (Liliaceae). Ber Dtsch Bot Ges Bd 94: 249–266

    Google Scholar 

  • Heslop-Harrison JS, Leitch AR, Schwarzacher T, Anamthawat-Jónsson K (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65: 385–392

    Google Scholar 

  • Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome-specific DNA markers ofBrassica and the evolution of amphidiploids and n=9 diploid species. Genome 33: 131–142

    Google Scholar 

  • Itoh K, Iwabuchi M, Shimamoto K (1991) In situ hybridization with species-specific DNA probes gives evidence for asymmetric nature ofBrassica hybrids obtained by X-ray fusion. Theor Appl Genet 81: 356–362

    Google Scholar 

  • Kenton A, Rudall PJ (1987) An unusual case of complex heterozygosity inGelasine azurea (Iridaceae), and its implications for reproductive biology. Evol Trends Plants 1: 95–103

    Google Scholar 

  • Kenton A, Dickie JB, Langton DH, Bennett MD (1990) Nuclear DNA amount and karyotype symmetry inCypella andHesperoxiphion (Tigrideae; Iridaceae). Evol Trends Plants 4: 59–69

    Google Scholar 

  • Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7: 150–158

    Google Scholar 

  • Leitch AR, Mosgöller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridization to sectioned nuclei shown chromosome domains in grass hybrids. J Cell Sci 95: 335–341

    Google Scholar 

  • Levitzky GA (1931) The karyotype in systematics. Bull Appl Bot Genet Plant Breed 27: 220–240

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Manuelidis L (1985) Individual interphase chromosome domains revealed by in sity hybridization. Hum Genet 71: 288–293

    Google Scholar 

  • Matthey R (1975) Caryotypes de mammifères et d'oiseaux. La question des microchromosomes et quelques reflexions sur l'evolution chromosomique. Arch Genet 48: 12–26

    Google Scholar 

  • Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77: 253–255

    Google Scholar 

  • Rayburn AL, Gill BS (1987) Use of repeated DNA sequences as cytological markers. Am J Bot 74: 574–580

    Google Scholar 

  • Saul MW, Potrykus I (1984) Species-specific repetitive DNA used to identify interspecific somatic hybrids. Plant Cell Rep 3: 65–67

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324

    Google Scholar 

  • Schweizer D, Strehl S, Hagemann S (1990) Plant repetitive DNA elements and chromosome structure. In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes today, vol 10. Unwin Hyman, London Boston Sydney Wellington, pp 33–43

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Vosa CG (1983) Chromosome evolution inOrnithogalum. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, p 370

    Google Scholar 

  • Vosa CG, Bennett ST (1990) Chromosome studies in the Southern African flora: 58–94. Chromosome evolution in the genusGasteria Duval. Caryologia 43: 235–247

    Google Scholar 

  • Xu J, Procunier JD, Kasha KJ (1990) Species-specific in sity hybridization ofHordeum bulbosum chromosomes. Genome 33: 628–634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

by D. Schweizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, S.T., Kenton, A.Y. & Bennett, M.D. Genomic in situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae). Chromosoma 101, 420–424 (1992). https://doi.org/10.1007/BF00582836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582836

Keywords

Navigation