Skip to main content
Log in

Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Previously, the growth of Arabidopsis hit1-1 (heat-intolerant) mutant was found to be inhibited by both heat and water stress (Wu et al. in J Plant Physiol 157:543–547, 2000). In order to determine the genetic mutation underlying the hit1-1 phenotype, map-based cloning of HIT1 gene was conducted. Transformation of the hit1-1 mutant with a HIT1 cDNA clone reverts the mutant to the heat tolerance phenotype, confirming the identity of HIT1. Sequence analysis revealed the HIT1 gene encodes a protein of 829 amino acid residues and is homologous to yeast (Saccharomyces cerevisiae) Vps53p protein. The yeast Vps53p protein has been shown to be a tethering factor that associates with Vps52p and Vps54p in a complex formation involved in the retrograde trafficking of vesicles to the late Golgi. An Arabidopsis homolog of yeast Vps52p has previously been identified and mutation of either the homolog or HIT1 by T-DNA insertion resulted in a male-specific transmission defect. The growth of yeast vps53Δ null mutant also shows reduced thermotolerance, and expression of HIT1 in this mutant can partially complement the defect, supporting the possibility of a conserved biological function for Vps53p and HIT1. Collectively, the hit1-1 is the first mutant in higher plant linking a homolog of the vesicle tethering factor to both heat and osmotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SNARE:

Soluble N-ethylmaleimide-sensitive factor adaptor protein receptor

SSLP:

Simple sequence length polymorphism

CAPS:

Cleaved amplified polymorphic sequence

SNP:

Single nucleotide polymorphism

HSP:

Heat shock protein

LEA:

Late embryogenesis abundant

COR:

Cold regulated

VPS:

Vesicular protein sorting

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  • Advani RJ, Yang B, Prekeris R, Lee KC, Klumperman J, Scheller RH (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146:765–766

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Saeed MM, Qureshi MJ (1994) Tolerance to high temperature in cotton at initial growth stages. Environ Exp Bot 34:275–283

    Article  Google Scholar 

  • Blatt MR, Leyman B, Geelen D (1999) Molecular events of vesicle trafficking and control by SNARE proteins in plants. New Phytol 144:389–418

    Article  CAS  Google Scholar 

  • Burke JJ, Upchurch DR (1989) Leaf temperature and transpirational control in cotton. Environ Exp Bot 29:487–492

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L, Hepler PK, Wu HM (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Conibear E, Stevens TH (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11:305–323

    PubMed  CAS  Google Scholar 

  • Conibear E, Cleck JN, Stevens TH (2003) Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14:1610–1623

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • Fu QA, Ehleringer JR (1989) Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol 91:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GM (2003) The emerging role for sphingolipids in eukaryotic heat shock response. Cell Mol Life Sci 60:701–710

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass. Crop Sci 41:1168–1173

    Article  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G (2004) Microarray expression analysis of Arabidopsis guard cells and isolation of recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  PubMed  CAS  Google Scholar 

  • Levine A (2002) Regulation of stress responses by intracellular vesicle trafficking? Plant Physiol Biochem 40:531–535

    Article  CAS  Google Scholar 

  • Levine A, Belenghi B, Damari-Weisler H, Granot D (2001) Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 276:46284–46289

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    Article  PubMed  CAS  Google Scholar 

  • Lin WH, Ye R, Ma H, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14:34–45

    Article  PubMed  CAS  Google Scholar 

  • Lobstein E, Guyon A, Ferault M, Twell D, Pelletier G, Bonhomme S (2004) The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol 135:1480–1490

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Mittler R, Berkowitz G (2001) Hydrogen peroxide, a messenger with too many roles? Redox Rep 6:69–72

    Article  PubMed  CAS  Google Scholar 

  • Morales D, Rodríguez P, Dell’amico J, Nicolás E, Torrecillas A, Sánchez-blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plantarum 47:203–208

    Article  Google Scholar 

  • Neuner G, Ambach D, Aichner K (1999) Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol 19:725–732

    PubMed  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Article  PubMed  CAS  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    Article  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Siniossoglou S, Pelham HR (2001) An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 20:5991–5998

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protien in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    Article  PubMed  CAS  Google Scholar 

  • Upchurch DR, Mahan JR (1988) Maintenance of constant leaf temperature by plants—II. Experimental observations in cotton. Environ Exp Bot 28:359–366

    Article  Google Scholar 

  • Wang Z, Huang B (2004) Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci 44:1729–1736

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Isoda A, Li Z, Wang P (2004) Transpiration and leaf movement of cotton cultivars grown in the field under arid conditions. Plant Prod Sci 7:266–270

    Article  Google Scholar 

  • Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637

    PubMed  CAS  Google Scholar 

  • Wu SJ, Locy RD, Shaw JJ, Cherry JH, Singh NK (2000) Mutation in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J Plant Physiol 157:543–547

    CAS  Google Scholar 

  • Yu F, Berg VS (1994) Control of paraheliotropism in two Phaseolus species. Plant Physiol 106:1567–1573

    PubMed  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science Council (Taiwan) grants NSC 92-2311-B-008-009 and NSC 94-2311-B-008-003 (S.-J. Wu). We thank Ms. Kuei-Yun Chang for her excellent sequencing works. Help from Drs. Kuo-Chen Yeh (Institute of BioAgricultural Sciences, Academia Sinica, Taiwan), Shu-Hsing Wu (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan), and Chung-An Lu (Department of Biological Sciences, National Central University, Taiwan) is appreciated. The spiritual support from Ms. Shu-Sheng Chang is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaw-Jye Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CF., Pu, HY., Wang, LC. et al. Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224, 330–338 (2006). https://doi.org/10.1007/s00425-005-0216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0216-6

Keywords

Navigation